Anomaly Detection on Data Streams - A LSTM's Diary

被引:0
|
作者
Augenstein, Christoph [1 ]
Franczyk, Bogdan [2 ]
机构
[1] Univ Leipzig, Inst Informat Syst, Grimmaische Str 12, Leipzig, Germany
[2] Wroclaw Univ Econ, Ul Komandorska 118-120, Wroclaw, Poland
来源
RESEARCH CHALLENGES IN INFORMATION SCIENCE (RCIS 2020) | 2020年 / 385卷
关键词
Machine learning; Neural nets; Sequence analysis; Anomaly detection; NETWORK;
D O I
10.1007/978-3-030-50316-1_22
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the past years, the importance of processing data streams increased with the emergence of new technologies and application domains. The Internet of Things provides many examples, in which processing and analyzing data streams are critical success factors. An important use case is to identify anomalies, i.e. something that is different or unexpected. We often have to cope with anomaly detection use cases in sequences within data streams, for instance in network intrusion, in predictive analytics or in forecasting. Sequence analysis can be performed using recurrent neural nets and in particular, we use long short-term memory (LSTM) neural nets. An LSTM is not only capable of storing a sequence of data but also of deciding to forget certain parts of it. Unfortunately, the internal representation of learned data does not clearly illustrate what was learned. Moreover, like many neural net-based approaches, these nets tend to need a high volume of data in order to produce valuable insights. In this paper, we want to present an experimental setting, comprising an architecture, a structured way of producing sample data and end-to-end pipelines to store and evaluate the hidden state of a LSTM per training batch. Main purpose is to extract the hidden state as well as to analyze changes during training and thus to identify patterns in the hidden state as well as anomalies.
引用
收藏
页码:369 / 377
页数:9
相关论文
共 50 条
  • [1] Anomaly detection for smartphone data streams
    Mirsky, Yisroel
    Shabtai, Asaf
    Shapira, Bracha
    Elovici, Yuval
    Rokach, Lior
    PERVASIVE AND MOBILE COMPUTING, 2017, 35 : 83 - 107
  • [2] Anomaly Pattern Detection on Data Streams
    Park, Cheong Hee
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2018, : 689 - 692
  • [3] Anomaly Detection Guidelines for Data Streams in Big Data
    Rana, Annie Ibrahim
    Estrada, Giovani
    Sole, Marc
    Muntes, Victor
    2016 3RD INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE (ISCMI 2016), 2016, : 94 - 98
  • [4] Outlier and anomaly pattern detection on data streams
    Cheong Hee Park
    The Journal of Supercomputing, 2019, 75 : 6118 - 6128
  • [5] Anomaly Detection on Data Streams for Smart Agriculture
    Moso, Juliet Chebet
    Cormier, Stephane
    de Runz, Cyril
    Fouchal, Hacene
    Wandeto, John Mwangi
    AGRICULTURE-BASEL, 2021, 11 (11):
  • [6] OHODIN - Online Anomaly Detection for Data Streams
    Gruhl, Christian
    Tomforde, Sven
    2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING AND SELF-ORGANIZING SYSTEMS COMPANION (ACSOS-C 2021), 2021, : 193 - 197
  • [7] Review of Anomaly Detection Algorithms for Data Streams
    Lu, Tianyuan
    Wang, Lei
    Zhao, Xiaoyong
    APPLIED SCIENCES-BASEL, 2023, 13 (10):
  • [8] Adaptive Anomaly Detection on Network Data Streams
    Riddle-Workman, Elizabeth
    Evangelou, Marina
    Adams, Niall M.
    2018 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS (ISI), 2018, : 19 - 24
  • [9] Outlier and anomaly pattern detection on data streams
    Park, Cheong Hee
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (09): : 6118 - 6128
  • [10] AD2S: Adaptive anomaly detection on sporadic data streams
    Liu, Fengrui
    Wang, Yang
    Li, Zhenyu
    Guan, Hongtao
    Xie, Gaogang
    COMPUTER COMMUNICATIONS, 2023, 209 : 151 - 162