Topological Order Discovery via Deep Knowledge Tracing

被引:4
作者
Zhang, Jiani [1 ,2 ]
King, Irwin [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Shenzhen Res Inst, Shenzhen Key Lab Rich Media Big Data Analyt & App, Shenzhen, Peoples R China
[2] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China
来源
NEURAL INFORMATION PROCESSING, ICONIP 2016, PT IV | 2016年 / 9950卷
关键词
Knowledge tracing; Topological order; Recurrent neural networks;
D O I
10.1007/978-3-319-46681-1_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The goal of discovering topological order of skills is to generate a sequence of skills satisfying all prerequisite requirements. Very few previous studies have examined this task from knowledge tracing perspective. In this paper, we introduce a new task of discovering topological order of skills using students' exercise performance and explore the utility of Deep Knowledge Tracing (DKT) to solve this task. The learned topological results can be used to improve students' learning efficiency by providing students with personalized learning paths and predicting students' future exercise performance. Experimental results demonstrate that our method is effective to generate reasonable topological order of skills.
引用
收藏
页码:112 / 119
页数:8
相关论文
共 12 条
[1]  
CORBETT AT, 1994, USER MODEL USER-ADAP, V4, P253, DOI 10.1007/BF01099821
[2]  
Graves A, 2013, ARXIV13080850
[3]  
Hecht-Nielsen R., 1989, IJCNN: International Joint Conference on Neural Networks (Cat. No.89CH2765-6), P593, DOI 10.1109/IJCNN.1989.118638
[4]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[5]   TOPOLOGICAL SORTING OF LARGE NETWORKS [J].
KAHN, AB .
COMMUNICATIONS OF THE ACM, 1962, 5 (11) :558-562
[6]  
Khajah Mohammad, 2016, How deep is knowledge tracing?
[7]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[8]  
Pardos ZA, 2011, LECT NOTES COMPUT SC, V6787, P243, DOI 10.1007/978-3-642-22362-4_21
[9]  
Pardos ZA, 2010, LECT NOTES COMPUT SC, V6075, P255, DOI 10.1007/978-3-642-13470-8_24
[10]  
Piechet al., 2015, P INT C ADV NEUR INF, P505