On the weak distance-regularity of Moore-type digraphs

被引:0
|
作者
Comellas, F.
Fiol, M. A.
Gimbert, J.
Mitjana, M.
机构
[1] Univ Politecn Catalunya, Dept Matemat Aplicada 4, ES-08034 Barcelona, Spain
[2] Univ Lleida, Dept Matemat, Lleida 25005, Spain
[3] Univ Politecn Catalunya, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
来源
LINEAR & MULTILINEAR ALGEBRA | 2006年 / 54卷 / 04期
关键词
weakly distance-regular digraph; Moore digraphs; adjacency spectrum; line digraph;
D O I
10.1080/03081080500423825
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that Moore digraphs, and some other classes of extremal digraphs, are weakly distance-regular in the sense that there is an invariance of the number of walks between vertices at a given distance. As weakly distance-regular digraphs, we then compute their complete spectrum from a 'small intersection matrix. This is a very useful tool for deriving some results about their existence and/or their structural properties. For instance, we present here an alternative and unified proof of the existence results on Moore digraphs, Moore bipartite digraphs and, more generally, Moore generalized p -cycles. In addition, we show that the line digraph structure appears as a characteristic property of any Moore generalized p -cycle of diameter D >= 2 p .
引用
收藏
页码:265 / 284
页数:20
相关论文
共 47 条
  • [1] ON DISTANCE-REGULARITY IN GRAPHS
    WEICHSEL, PM
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1982, 32 (02) : 156 - 161
  • [2] Distance-Regularity and the Spectrum of Graphs
    Department of Econometrics, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, Netherlands
    Linear Algebra Its Appl, (265-278):
  • [3] Distance-regularity and the spectrum of graphs
    Haemers, WH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 236 : 265 - 278
  • [4] Spectral bounds and distance-regularity
    Fiol, MA
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 397 : 17 - 33
  • [5] Characterizing distance-regularity of graphs by the spectrum
    van Dam, E. R.
    Haemers, W. H.
    Koolen, J. H.
    Spence, E.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (08) : 1805 - 1820
  • [6] Dual concepts of almost distance-regularity and the spectral excess theorem
    Dalfo, C.
    van Dam, E. R.
    Fiol, M. A.
    Garriga, E.
    DISCRETE MATHEMATICS, 2012, 312 (17) : 2730 - 2734
  • [7] EQUIVALENT CHARACTERIZATIONS OF THE SPECTRA OF GRAPHS AND APPLICATIONS TO MEASURES OF DISTANCE-REGULARITY
    Diego, Victor
    Fabrega, Josep
    Angel Fiol, Miquel
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2020, 36 : 629 - 644
  • [8] EQUIVALENCE OF MEALY-TYPE AND MOORE-TYPE AUTOMATA AND A RELATION BETWEEN REDUCIBILITY AND MOORE-REDUCIBILITY
    FLEISCHNER, H
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1977, 14 (01) : 1 - 16
  • [9] Moore-type nonoscillation criteria for half-linear difference equations
    Wu, Fentao
    She, Lin
    Ishibashi, Kazuki
    MONATSHEFTE FUR MATHEMATIK, 2021, 194 (02): : 377 - 393
  • [10] Moore-type nonoscillation criteria for half-linear difference equations
    Fentao Wu
    Lin She
    Kazuki Ishibashi
    Monatshefte für Mathematik, 2021, 194 : 377 - 393