Anomalous diffusion of random walk on random planar maps

被引:13
|
作者
Gwynne, Ewain [1 ]
Hutchcroft, Tom [1 ]
机构
[1] Univ Cambridge, Cambridge, England
关键词
QUANTUM-GRAVITY; BROWNIAN-MOTION; SCALING LIMIT; PERCOLATION; SLE; TRIANGULATIONS; GEOMETRY;
D O I
10.1007/s00440-020-00986-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the simple random walk on the uniform infinite planar triangulation (UIPT) typically travels graph distance at most n(1/4+on)(1) in n units of time. Together with the complementary lower bound proven by Gwynne and Miller (2017) this shows that the typical graph distance displacement of the walk after n steps is n(1/4+on) (1), as conjectured by Benjamini and Curien (Geom Funct Anal 2(2):501-531, 2013. arXiv:1202.5454). More generally, we show that the simple random walks on a certain family of random planar maps in the gamma-Liouville quantum gravity (LQG) universality class for gamma is an element of (0, 2)-including spanning tree-weighted maps, bipolar-oriented maps, and mated-CRT maps-typically travels graph distance n(1/d gamma+on) (1) in n units of time, where d(gamma) is the growth exponent for the volume of a metric ball on the map, which was shown to exist and depend only on gamma by Ding and Gwynne (Commun Math Phys 374:1877-1934, 2018. arXiv:1807.01072). Since d(gamma) > 2, this shows that the simple random walk on each of these maps is subdiffusive. Our proofs are based on an embedding of the random planar maps under consideration into C wherein graph distance balls can be compared to Euclidean balls modulo subpolynomial errors. This embedding arises from a coupling of the given random planar map with a mated-CRT map together with the relationship of the latter map to SLE-decorated LQG.
引用
收藏
页码:567 / 611
页数:45
相关论文
共 50 条
  • [1] Anomalous diffusion of random walk on random planar maps
    Ewain Gwynne
    Tom Hutchcroft
    Probability Theory and Related Fields, 2020, 178 : 567 - 611
  • [2] RANDOM WALK ON RANDOM PLANAR MAPS: SPECTRAL DIMENSION, RESISTANCE AND DISPLACEMENT
    Gwynne, Ewain
    Miller, Jason
    ANNALS OF PROBABILITY, 2021, 49 (03): : 1097 - 1128
  • [3] Correlated anomalous diffusion: Random walk and Langevin equation
    Sogo, Kiyoshi
    Kishikawa, Yoshiaki
    Ohnishi, Shuhei
    Yamamoto, Takenori
    Fujiwara, Susumu
    Aoki, Keiko M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (03)
  • [4] A discrete time random walk model for anomalous diffusion
    Angstmann, C. N.
    Donnelly, I. C.
    Henry, B. I.
    Nichols, J. A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 53 - 69
  • [5] Approach of continuous time random walk model to anomalous diffusion
    Fang, Lin
    Jing-Dong, Bao
    ACTA PHYSICA SINICA, 2008, 57 (02) : 696 - 702
  • [6] ANOMALOUS CONFORMATION OF POLYMER-CHAINS - RANDOM-WALK OF A RANDOM-WALK ON A RANDOM-WALK
    PANDEY, RB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (02): : L53 - L56
  • [7] Random walk approximation of fractional-order multiscaling anomalous diffusion
    Zhang, Yong
    Benson, David A.
    Meerschaert, Mark M.
    LaBolle, Eric M.
    Scheffler, Hans-Peter
    PHYSICAL REVIEW E, 2006, 74 (02):
  • [8] The random walk's guide to anomalous diffusion: a fractional dynamics approach
    Metzler, R
    Klafter, J
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01): : 1 - 77
  • [9] EXACT CALCULATION OF THE ANOMALOUS DIMENSION OF THE DIFFUSION-COEFFICIENT FOR A MODEL OF A RANDOM-WALK IN A RANDOM POTENTIAL
    HONKONEN, J
    PISMAK, YM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18): : L899 - L905
  • [10] The random walk of understanding diffusion
    Kärger, J
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (14) : 3335 - 3340