The opposing effect of butanol and butyric acid on the abundance of bromide and iodide at the aqueous solution-air interface

被引:13
|
作者
Lee, Ming-Tao [1 ,2 ,7 ]
Orlando, Fabrizio [1 ]
Khabiri, Morteza [3 ,4 ]
Roeselova, Martina [3 ]
Brown, Matthew A. [5 ,6 ]
Ammann, Markus [1 ]
机构
[1] Paul Scherrer Inst, Environm Chem Lab, CH-5232 Villigen, Switzerland
[2] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland
[3] Acad Sci Czech Republ, Inst Organ Chem & Biochem, Flemingovo Nam 2, CR-16610 Prague 6, Czech Republic
[4] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
[5] Swiss Fed Inst Technol, Dept Mat, Lab Surface Sci & Technol, CH-8093 Zurich, Switzerland
[6] Natl Res Council Canada, NRC Metrol, 1200 Montreal Rd, Ottawa, ON, Canada
[7] Dept Chem, Angstrom Lab, Lagerhyddsvagen 1, S-75121 Uppsala, Sweden
基金
瑞士国家科学基金会;
关键词
LIQUID-VAPOR INTERFACE; X-RAY-ABSORPTION; SURFACE-TENSION; PHOTOELECTRON-SPECTROSCOPY; HALOGEN CHEMISTRY; MOLECULAR-DYNAMICS; CARBOXYLIC-ACIDS; WATER-SURFACE; ION SOLVATION; OZONE;
D O I
10.1039/c8cp07448h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The efficient oxidation of iodide and bromide at the aqueous solution-air interface of the ocean or of sea spray aerosol particles had been suggested to be related to their surface propensity. The ubiquitous presence of organic material at the ocean surface calls for an assessment of the impact of often surface-active organic compounds on the interfacial density of halide ions. We used in situ X-ray photoelectron spectroscopy with a liquid micro-jet to obtain chemical composition information at aqueous solution-vapor interfaces from mixed aqueous solutions containing bromide or iodide and 1-butanol or butyric acid as organic surfactants. Core level spectra of Br 3d, Na 2s, C 1s and O 1s at ca. 160 eV kinetic energy and core level spectra of I 4d and O 1s at ca. 400 eV kinetic energy are compared for solutions with 1-butanol and butyric acid as a function of organic concentration. A simple model was developed to account for the attenuation of photoelectrons by the aliphatic carbon layer of the surfactants and for changing local density of bromide and iodide in response to the presence of the surfactants. We observed that 1-butanol increases the interfacial density of bromide by 25%, while butyric acid reduces it by 40%, both in comparison to the pure aqueous halide solution. Qualitatively similar behavior was observed for the case of iodide. Classical molecular dynamics simulations failed to reproduce the details of the response of the halide ions to the presence of the two organics. This is attributed to the lack of correct monovalent ion parameters at low concentration possibly leading to an overestimation of the halide ion concentration at the interface in absence of organics. The results clearly demonstrate that organic surfactants change the electrostatic interactions near the interface with headgroup specific effects. This has implications for halogen activation processes specifically when oxidants interact with halide ions at the aqueous solution-air interfaces of the ocean surface or sea spray aerosol particles.
引用
收藏
页码:8418 / 8427
页数:10
相关论文
共 49 条