Shimura curves on Shimura surfaces have been a candidate for counterexamples to the bounded negativity conjecture. We prove that they do not serve this purpose: there are only finitely many whose self-intersection number lies below a given bound. Previously (Duke Math. J. 162: 10 (2013), 1877-1894), this result was shown for compact Hilbert modular surfaces using the Bogomolov-Miyaoka-Yau inequality. Our approach uses equidistribution and works uniformly for all Shimura surfaces.
机构:
Univ Autonoma Metropolitana, Unidad Cuajimalpa, Mexico City 01120, DF, MexicoUniv Autonoma Metropolitana, Unidad Cuajimalpa, Mexico City 01120, DF, Mexico
Armas-Sanabria, Lorena
Gonzalez-Acuna, Francisco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, MexicoUniv Autonoma Metropolitana, Unidad Cuajimalpa, Mexico City 01120, DF, Mexico
Gonzalez-Acuna, Francisco
Rodriguez-Viorato, Jesus
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, MexicoUniv Autonoma Metropolitana, Unidad Cuajimalpa, Mexico City 01120, DF, Mexico