Predicting Listener Backchannels: A Probabilistic Multimodal Approach

被引:0
|
作者
Morency, Louis-Philippe [1 ]
de Kok, Iwan [2 ]
Gratch, Jonathan [1 ]
机构
[1] Univ So Calif, Inst Creat Technol, 13274 Fiji Way, Marina Del Rey, CA 90292 USA
[2] Univ Twente, Human Media Interact Grp, Enschede 7500 AE, Netherlands
来源
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
During face-to-face interactions, listeners use backchannel feedback such as head nods as a signal to the speaker that the communication is working and that the), should continue speaking. Predicting these backchannel opportunities is an important milestone for building engaging and natural virtual humans. In this paper we show how sequential probabilistic models (e.g., Hidden Markov Model or Conditional Random Fields) can automatically learn from a database of human-to-human interactions to predict listener backchannels using the speaker multimodal output features (e.g., prosody, spoken words and eye gaze). The main challenges addressed in this paper are automatic selection of the relevant features and optimal feature representation for probabilistic models. For prediction of visual backchannel cues (i.e., head nods), our prediction model shows a statistically significant improvement over a previously published approach based on hand-crafted rules.
引用
收藏
页码:176 / +
页数:4
相关论文
共 50 条
  • [1] A probabilistic multimodal approach for predicting listener backchannels
    Louis-Philippe Morency
    Iwan de Kok
    Jonathan Gratch
    Autonomous Agents and Multi-Agent Systems, 2010, 20 : 70 - 84
  • [2] A probabilistic multimodal approach for predicting listener backchannels
    Morency, Louis-Philippe
    de Kok, Iwan
    Gratch, Jonathan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2010, 20 (01) : 70 - 84
  • [3] A Multimodal LSTM for Predicting Listener Empathic Responses Over Time
    Tan, Zhi-Xuan
    Goel, Arushi
    Thanh-Son Nguyen
    Ong, Desmond C.
    2019 14TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2019), 2019, : 705 - 708
  • [4] Multimodal Backchannels for Embodied Conversational Agents
    Bevacqua, Elisabetta
    Pammi, Sathish
    Hyniewska, Sylwia Julia
    Schroeder, Marc
    Pelachaud, Catherine
    INTELLIGENT VIRTUAL AGENTS, IVA 2010, 2010, 6356 : 194 - 200
  • [5] A multimodal analysis of vocal and visual backchannels in spontaneous dialogs
    Truong, Khiet P.
    Poppe, Ronald
    de Kok, Iwan
    Heylen, Dirk
    12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 2984 - 2987
  • [6] A Probabilistic Approach for Predicting Vessel Motion
    Qi Hu
    Jingyi Liu
    Zongyu Zuo
    IEEE/CAAJournalofAutomaticaSinica, 2024, 11 (08) : 1877 - 1879
  • [7] A Probabilistic Approach for Predicting Vessel Motion
    Hu, Qi
    Liu, Jingyi
    Zuo, Zongyu
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (08) : 1877 - 1879
  • [8] A probabilistic network approach to predicting sleep architecture
    Yetton, B. D.
    Mcdevitt, E. A.
    Mednick, S. C.
    JOURNAL OF SLEEP RESEARCH, 2016, 25 : 59 - 59
  • [9] Predicting Psychotherapy Benefit: A Probabilistic and Individualized Approach
    Lindhiem, Oliver
    Kolko, David J.
    Cheng, Yu
    BEHAVIOR THERAPY, 2012, 43 (02) : 381 - 392
  • [10] A Probabilistic Approach for Predicting Methane Occurrence in Groundwater
    Humez, Pauline
    Osselin, Florian
    Wilson, Leah J.
    Nightingale, Michael
    Kloppmann, Wolfram
    Mayer, Bernhard
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (21) : 12914 - 12922