COMPLETE CONVERGENCE AND COMPLETE MOMENT CONVERGENCE FOR ARRAYS OF ROWWISE NEGATIVELY DEPENDENT RANDOM VARIABLES UNDER SUB-LINEAR EXPECTATIONS

被引:1
|
作者
Wang, Miaomiao [1 ]
Wang, Min [2 ]
Wang, Rui [2 ]
Wang, Xuejun [1 ]
机构
[1] Anhui Univ, Sch Big Data & Stat, Hefei 230601, Peoples R China
[2] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2022年 / 16卷 / 04期
基金
中国国家自然科学基金;
关键词
Negatively dependent random variables; complete convergence; complete mo-ment convergence; sub-linear expectation space; capacity; STRONG LIMIT-THEOREMS; G-BROWNIAN MOTION; LARGE NUMBERS; WEIGHTED SUMS; STRONG LAW; STOCHASTIC CALCULUS; INEQUALITIES;
D O I
10.7153/jmi-2022-16-89
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, under some suitable conditions, we study the complete convergence and complete moment convergence for arrays of rowwise negatively dependent random variables in sub-linear expectation space (Omega,H, (E) over cap). Some general results on complete convergence and complete moment convergence for arrays of rowwise negatively dependent random variables under sub-linear expectations are established, which extend the corresponding ones in classical probability space to the case of sub-linear expectation space.
引用
收藏
页码:1347 / 1370
页数:24
相关论文
共 50 条