Sensing charges of the Ciona intestinalis voltage-sensing phosphatase

被引:36
|
作者
Villalba-Galea, Carlos A. [1 ]
Frezza, Ludivine [2 ]
Sandtner, Walter [3 ]
Bezanilla, Francisco [2 ]
机构
[1] Virginia Commonwealth Univ, Dept Physiol & Biophys, Sch Med, Richmond, VA 23298 USA
[2] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
[3] Med Univ Vienna, Inst Pharmacol, Ctr Physiol & Pharmacol, A-1090 Vienna, Austria
来源
JOURNAL OF GENERAL PHYSIOLOGY | 2013年 / 142卷 / 05期
基金
美国国家卫生研究院;
关键词
ELECTRIC-FIELD; CI-VSP; SENSOR; CHANNEL; EVOLUTION; CURRENTS; XENOPUS; DOMAIN; STATE; CLAMP;
D O I
10.1085/jgp.201310993
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing.
引用
收藏
页码:543 / 555
页数:13
相关论文
共 50 条
  • [1] Dynamics of activation in the voltage-sensing domain of Ciona intestinalis phosphatase Ci-VSP
    Guo, Spencer C.
    Shen, Rong
    Roux, Benoit
    Dinner, Aaron R.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [2] Dynamics of activation in the voltage-sensing domain of Ciona intestinalis phosphatase Ci-VSP
    Spencer C. Guo
    Rong Shen
    Benoît Roux
    Aaron R. Dinner
    Nature Communications, 15
  • [3] Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity
    Rayaprolu, Vamseedhar
    Royal, Perrine
    Stengel, Karen
    Sandoz, Guillaume
    Kohout, Susy C.
    JOURNAL OF GENERAL PHYSIOLOGY, 2018, 150 (05): : 683 - 696
  • [4] Engineering an enhanced voltage-sensing phosphatase
    Kawanabe, Akira
    Mizutani, Natsuki
    Polat, Onur K.
    Yonezawa, Tomoko
    Kawai, Takafumi
    Mori, Masayuki X.
    Okamura, Yasushi
    JOURNAL OF GENERAL PHYSIOLOGY, 2020, 152 (05):
  • [5] Voltage-sensing phosphatase: actions and potentials
    Okamura, Yasushi
    Murata, Yoshimichi
    Iwasaki, Hirohide
    JOURNAL OF PHYSIOLOGY-LONDON, 2009, 587 (03): : 513 - 520
  • [6] Voltage-sensing phosphatase: mechanisms and applications
    Okamura, Yasushi
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2011, 115 : 55P - 55P
  • [7] Crystal Structure of the Cytoplasmic Phosphatase and Tensin Homolog (PTEN)-like Region of Ciona intestinalis Voltage-sensing Phosphatase Provides Insight into Substrate Specificity and Redox Regulation of the Phosphoinositide Phosphatase Activity
    Matsuda, Makoto
    Takeshita, Kohei
    Kurokawa, Tatsuki
    Sakata, Souhei
    Suzuki, Mamoru
    Yamashita, Eiki
    Okamura, Yasushi
    Nakagawa, Atsushi
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (26) : 23368 - 23377
  • [8] Allosteric substrate switching in a voltage-sensing lipid phosphatase
    Grimm S.S.
    Isacoff E.Y.
    Nature Chemical Biology, 2016, 12 (4) : 261 - 267
  • [9] Voltage-Sensing Phosphatase: Its Molecular Relationship With PTEN
    Okamura, Yasushi
    Dixon, Jack E.
    PHYSIOLOGY, 2011, 26 (01) : 6 - 13
  • [10] Allosteric substrate switching in a voltage-sensing lipid phosphatase
    Grimm, Sasha S.
    Isacoff, Ehud Y.
    NATURE CHEMICAL BIOLOGY, 2016, 12 (04) : 261 - +