STOCHASTIC ORDER OF SAMPLE RANGE FROM HETEROGENEOUS EXPONENTIAL RANDOM VARIABLES

被引:10
|
作者
Zhao, Peng [1 ]
Li, Xiaohu [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
PARALLEL SYSTEMS; CONVOLUTIONS; COMPONENTS; SPACINGS;
D O I
10.1017/S0269964809000023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Let X-1, ..., X-n be independent exponential random variables with their respective hazard rates lambda(1), ..., lambda(n), and let Y-1, ..., Y-n be independent exponential random variables with common hazard rate lambda. Denote by X-n:n, Y-n:n and Y-1:n the corresponding maximum and minimum order statistics. X-n:n - X-1:n is proved to be larger than Y-n:n - Y-1:n according to the usual stochastic order if and only if lambda >= ((lambda) over bar (-1)Pi(n)(i=1) lambda(i))(1/(n-1)) with (lambda) over bar = Sigma(n)(i=1) lambda(1/n) . Further, this usual stochastic order is strengthened to the hazard rate order for n = 2. However, a counterexample reveals that this can he strengthened neither to the hazard rate order nor to the reversed hazard rate order in the general case. The main result substantially improves those related ones obtained in Kochar and Rojo [16] and Khaledi and Kochar [13].
引用
收藏
页码:17 / 29
页数:13
相关论文
共 50 条