A Fast Background Subtraction Method Using Kernel Density Estimation for People Counting

被引:0
|
作者
Cao Jianzhao [1 ]
Victor, Osuji Chukwunonso [1 ]
Gilbert, Odoom Manfred [1 ]
Wang Changtao
机构
[1] Shenyang Jianzhu Univ, Shenyang, Liaoning, Peoples R China
关键词
image processing; background subtraction; kernel density estimation; foreground detection; people counting;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Background subtraction is the fundamental and essential step for the objects identifying from a video sequence in the vision system. Based on kernel density estimation, a fast background subtraction method is proposed and tested. In this method, the kernel density estimation background model is improved by LUT and early break method. Meanwhile, it is compared with single Gaussian model both for speed and effect. It has been tested in a 2.6GHz Intel Core machine with 25fps on 432x240 images without code optimization. Average processing speed is 18.9 and 34.6 million second per frame with 30 kernels and 60 kernels, respectively. The result shows that the improved method can be used in real-time processing and has better result than single Gaussian model.
引用
收藏
页码:133 / 138
页数:6
相关论文
共 50 条
  • [1] An Adaptive Background Subtraction Method Based on Kernel Density Estimation
    Lee, Jeisung
    Park, Mignon
    SENSORS, 2012, 12 (09) : 12279 - 12300
  • [2] Motion-based background subtraction using adaptive Kernel density estimation
    Mittal, A
    Paragios, N
    PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, 2004, : 302 - 309
  • [3] A fast background model using kernel density estimation and distance transform
    Cao, Jianzhao
    Ma, Ruwei
    Michael, Oloro
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2019, 32 (02) : 135 - 144
  • [4] Moving object detection method using background Gaussian kernel density estimation
    Wang, Jin-Song
    Yan, Yi-An
    Wei, Fa-Jie
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2009, 38 (02): : 373 - 376
  • [5] Motion Detection Using Periodic Background Estimation Subtraction Method
    Shazali, S. T. Syed
    Cheong, W. L.
    Mohamaddan, S.
    Kamaruddin, A. M. N. Abg
    Yassin, A.
    Case, K.
    2011 7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY IN ASIA (CITA 11), 2011,
  • [6] Density estimation using kernel method with distorter
    Tanaka, H
    Miyoshi, T
    Ichihashi, H
    IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 1224 - 1229
  • [7] A fast and objective multidimensional kernel density estimation method: fastKDE
    O'Brien, Travis A.
    Kashinath, Karthik
    Cavanaugh, Nicholas R.
    Collins, William D.
    O'Brien, John P.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 101 : 148 - 160
  • [8] Fast Kernel Density Estimation using Gaussian Filter Approximation
    Bullmann, Markus
    Fetzer, Toni
    Ebner, Frank
    Deinzer, Frank
    Grzegorzek, Marcin
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1233 - 1240
  • [9] Background Modeling Using Combined Kernel Density Estimation and Correlation Coefficients
    Rui, Ting
    Xing, Jian-chun
    Zhu, Jing-wei
    Fang, Hu-sheng
    2011 AASRI CONFERENCE ON APPLIED INFORMATION TECHNOLOGY (AASRI-AIT 2011), VOL 1, 2011, : 200 - 203
  • [10] Robust Background Modeling with Kernel Density Estimation
    Hua, Man
    Li, Yanling
    Luo, Yinhui
    INTERNATIONAL JOURNAL OF ONLINE ENGINEERING, 2015, 11 (08) : 13 - 16