The number of P-vertices in a matrix with maximum nullity

被引:4
|
作者
Fernandes, Rosario [1 ,2 ]
da Cruz, Henrique F. [3 ]
机构
[1] Univ Nova Lisboa, CMA, P-2829516 Caparica, Portugal
[2] Univ Nova Lisboa, Fac Ciencias & Tecnol, P-2829516 Caparica, Portugal
[3] Univ Beira Interior, Ctr Matemat & Aplicacoes CMA UBI, Rua Marques DAvila & Bolama, P-6201001 Covilha, Portugal
关键词
Trees; Acyclic matrices; Maximum nullity; Parter vertices; EIGENVALUE; MULTIPLICITY; GRAPH; TREE; SETS;
D O I
10.1016/j.laa.2018.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T be a tree with n >= 2 vertices. Set 8(T) for the set of all real symmetric matrices whose graph is T. Let A is an element of S(T) and i is an element of {1, . . . , n}. We denote by A(i) the principal submatrix of A obtained after deleting the row and column i. We set m(A) (0) for the multiplicity of the eigenvalue zero in A (the nullity of A). When m(A(i)) (0) = m(A) (0) + 1, we say that i is a P-vertex of A. As usual, M(T) denotes the maximum nullity occurring of B is an element of S(T). In this paper we determine an upper bound and a lower bound for the number of P-vertices in a matrix A is an element of S(T) with nullity M(T). We also prove that if the integer b is between these two bounds, then there is a matrix E is an element of S(T) with b P-vertices and maximum nullity. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:168 / 182
页数:15
相关论文
共 50 条
  • [1] The number of P-vertices for acyclic matrices of maximum nullity
    Du, Zhibin
    da Fonseca, Carlos M.
    DISCRETE APPLIED MATHEMATICS, 2019, 269 : 211 - 219
  • [2] The number of P-vertices for acyclic matrices with given nullity
    Du, Zhibin
    da Fonseca, Carlos M.
    DISCRETE MATHEMATICS, 2023, 346 (12)
  • [3] On the number of P-vertices of some graphs
    Andelic, Milica
    da Fonseca, C. M.
    Mamede, Ricardo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (02) : 514 - 525
  • [4] The maximum number of P-vertices of some nonsingular double star matrices
    Eric, Aleksandra
    da Fonseca, C. M.
    DISCRETE MATHEMATICS, 2013, 313 (20) : 2192 - 2194
  • [5] The singular acyclic matrices with maximal number of P-vertices
    Du, Zhibin
    da Fonseca, C. M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2274 - 2279
  • [6] Nonsingular acyclic matrices with an extremal number of P-vertices
    Du, Zhibin
    da Fonseca, C. M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 442 : 2 - 19
  • [7] Nonsingular acyclic matrices with full number of P-vertices
    Andelic, Milica
    Eric, Aleksandra
    da Fonseca, C. M.
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (01): : 49 - 57
  • [8] THE NUMBER OF P-VERTICES OF SINGULAR ACYCLIC MATRICES: AN INVERSE PROBLEM
    Du, Zhibin
    da Fonseca, Carlos M.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (02) : 525 - 532
  • [9] The singular acyclic matrices with the second largest number of P-vertices
    Du, Zhibin
    da Fonseca, Carlos M.
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (10): : 2103 - 2120
  • [10] Nonsingular acyclic matrices with full number of P-vertices (vol 61, pg 49, 2012)
    Andelic, Milica
    Eric, Aleksandra
    da Fonseca, C. M.
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (08): : 1159 - 1160