The relative importance of data points in systems biology and parameter estimation

被引:0
|
作者
Jeong, Jenny [1 ]
Qiu, Peng [2 ,3 ]
机构
[1] Georgia Inst Technol, Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Biomed Engn, Atlanta, GA 30332 USA
[3] Emory Univ, Atlanta, GA 30322 USA
来源
2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2017年
基金
美国国家科学基金会;
关键词
parameter estimation; optimization; weighted cost function; sampling algorithm; EXPERIMENTAL-DESIGN; MODELS; OPTIMIZATION; NETWORKS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Estimating model parameters is a crucial step to understand the behavior of biological systems. To perform parameter estimation, a commonly used formulation is the least square method that minimizes the mean squared error. This method finds the model parameters that minimize the sum of the squared error between experimental data and model predictions. However, such a formulation can misguide parameter estimation and the understanding of the system. This is mainly because least square formulation typically treats all data points equally, while the reality is that not all data points are of equal importance. Another common issue in systems biology is that the amount of experimental data is almost always limited compared to the model complexity, making parameter estimation challenging and ill-conditioned. Ignoring the relative importance of data points may amplify the ill-conditioned nature of the problem. Therefore, we propose to give different weight to each data point when formulating the least square cost function. The weight of each data point is defined by an uncertainty measure for the data point given the others, quantifying each data point's unique information that cannot be inferred from other data points. To test our algorithm, we used a G1/S transition model with two dynamic variables and 12 parameters, developed a sampling algorithm to obtain collections of parameter settings close to the best fit, and demonstrated the benefits of the proposed weighted cost function formulation.
引用
收藏
页码:367 / 373
页数:7
相关论文
共 50 条
  • [1] Quantifying the relative importance of experimental data points in parameter estimation
    Jeong, Jenny E.
    Qiu, Peng
    BMC SYSTEMS BIOLOGY, 2018, 12
  • [2] The Importance of Sharing Data in Systems Biology
    Wood-Charlson, Elisha M.
    METABOLITES, 2023, 13 (01)
  • [3] Systems biology: parameter estimation for biochemical models
    Ashyraliyev, Maksat
    Fomekong-Nanfack, Yves
    Kaandorp, Jaap A.
    Blom, Joke G.
    FEBS JOURNAL, 2009, 276 (04) : 886 - 902
  • [4] A distributed approach for parameter estimation in Systems Biology models
    Mosca, E.
    Merelli, I.
    Alfieri, R.
    Milanesi, L.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-COLLOQUIA ON PHYSICS, 2009, 32 (02): : 165 - 168
  • [5] The application of grid technology in systems biology: parameter estimation
    Dhar, PK
    SEVENTH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND GRID IN ASIA PACIFIC REGION, PROCEEDINGS, 2004, : 370 - 377
  • [6] Bayesian parameter estimation for dynamical models in systems biology
    Linden, Nathaniel J.
    Kramer, Boris
    Rangamani, Padmini
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (10)
  • [7] Parameter estimation of chaotic systems based on extreme value points
    Zhihuan Chen
    Xiaohui Yuan
    Xu Wang
    Yanbin Yuan
    Pramana, 2019, 92
  • [8] Parameter estimation of chaotic systems based on extreme value points
    Chen, Zhihuan
    Yuan, Xiaohui
    Wang, Xu
    Yuan, Yanbin
    PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (06):
  • [9] Parameter estimation in systems biology models using spline approximation
    Zhan, Choujun
    Yeung, Lam F.
    BMC SYSTEMS BIOLOGY, 2011, 5
  • [10] Parameter Estimation Using Metaheuristics in Systems Biology: A Comprehensive Review
    Sun, Jianyong
    Garibaldi, Jonathan M.
    Hodgman, Charlie
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (01) : 185 - 202