Fault-tolerant finite control set-model predictive control for marine current turbine applications

被引:16
|
作者
Pham, Huu-Tam [1 ]
Bourgeot, Jean-Matthieu [1 ]
Benbouzid, Mohamed [2 ,3 ]
机构
[1] Ecole Natl Ingn Brest, FRE CNRS IRDL 3744, F-29280 Plouzane, France
[2] Univ Brest, FRE CNRS IRDL 3744, F-29238 Brest, France
[3] Shanghai Maritime Univ, Shanghai, Peoples R China
关键词
fault tolerant control; predictive control; hydraulic turbines; permanent magnet generators; synchronous generators; fault-tolerant finite control set-model; marine current turbine applications; marine current energy conversion system; five-phase permanent magnet synchronous generator; swell effect; open-circuit fault conditions; reference currents; reference torque; copper losses; Raz-de-Sein site; Bretagne; France; FTC strategy; SPEED CONTROL; GENERATOR; SYSTEMS;
D O I
10.1049/iet-rpg.2017.0431
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study deals with a fault-tolerant control (FTC) strategy for a marine current energy conversion system based on a five-phase permanent magnet synchronous generator. First, a finite control set-model predictive control is adopted to highlight the advantages of this kind of generator in normal mode. The speed tracking performance is evaluated when the system operates under swell effect. Second, its fault tolerance is evaluated under various open-circuit fault conditions. In this case, the reference currents are reconfigured online to achieve the reference torque while minimising the copper losses. Extensive simulations, based on real-tidal speed data measured at the Raz-de-Sein site in Bretagne, France, are carried out for the validation of the proposed FTC strategy.
引用
收藏
页码:415 / 421
页数:7
相关论文
共 50 条
  • [1] Fault diagnosis and fault-tolerant finite control set-model predictive control of a multiphase voltage-source inverter supplying BLDC motor
    Salehifar, Mehdi
    Moreno-Equilaz, Manuel
    ISA TRANSACTIONS, 2016, 60 : 143 - 155
  • [2] Open-Switch Fault Diagnosis and Fault Tolerant for Matrix Converter With Finite Control Set-Model Predictive Control
    Peng, Tao
    Dan, Hanbing
    Yang, Jian
    Deng, Hui
    Zhu, Qi
    Wang, Chunsheng
    Gui, Weihua
    Guerrero, Josep M.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (09) : 5953 - 5963
  • [3] A Unified Fault-tolerant Control of Five-phase PMSM Based on Simplified Finite Control Set Model Predictive Current Control
    Zhou H.
    Wang C.
    Sun D.
    Liu Z.
    Chen Q.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2024, 44 (01): : 269 - 279
  • [4] Fault-tolerant model predictive control
    Camacho, E. F.
    Alamoand, T.
    Munoz de la Pena, D.
    2010 IEEE CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2010,
  • [5] Comparative Investigations of Sensor Fault-Tolerant Control Strategies Performance for Marine Current Turbine Applications
    Huu-Tam Pham
    Bourgeot, Jean-Matthieu
    Benbouzid, Mohamed El Hachemi
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2018, 43 (04) : 1024 - 1036
  • [6] Finite Control Set-Model Predictive Speed Control with a Voltage Smoother
    Kawai, Hiroaki
    Zhang, Zhenbin
    Kennel, Ralph
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 528 - 533
  • [7] Proactive fault-tolerant model predictive control
    Lao, Liangfeng
    Ellis, Matthew
    Christofides, Panagiotis D.
    AICHE JOURNAL, 2013, 59 (08) : 2810 - 2820
  • [8] Koopman fault-tolerant model predictive control
    Bakhtiaridoust, Mohammadhosein
    Yadegar, Meysam
    Jahangiri, Fatemeh
    IET CONTROL THEORY AND APPLICATIONS, 2024, 18 (07): : 939 - 950
  • [9] Multicell AFE Rectifier Managed by Finite Control Set-Model Predictive Control
    Espinosa, Eduardo E.
    Melin, Pedro E.
    Garces, Hugo O.
    Baier, Carlos R.
    Espinoza, Jose R.
    IEEE ACCESS, 2021, 9 : 137782 - 137792
  • [10] An electric spring control strategy based on finite control set-model predictive control
    Zhang T.
    Hao Q.
    Zheng Z.
    Lu C.
    Journal Europeen des Systemes Automatises, 2020, 53 (04): : 461 - 468