Traveling-wave solutions in continuous chains of unidirectionally coupled oscillators

被引:0
|
作者
Glyzin, S. D. [1 ,2 ]
Kolesov, A. Yu [1 ]
Rozov, N. Kh [3 ]
机构
[1] Yarostavl State Univ, Fac Math, Sovetskaya Str 14, Yaroslavl 150000, Russia
[2] RAS, Sci Ctr Chernogolovka, Lesnaya Str 9, Chernogolovka 142432, Moscow Region, Russia
[3] Moscow MV Lomonosov State Univ, Fac Mech & Math, Main Bldg, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
D O I
10.1088/1742-6596/937/1/012015
中图分类号
O59 [应用物理学];
学科分类号
摘要
Proposed is a mathematical model of a continuous annular chain of unidirectionally coupled generators given by certain nonlinear advection-type hyperbolic boundary value problem. Such problems are constructed by a limit transition from annular chains of unidirectionally coupled ordinary differential equations with an unbounded increase in the number of links. It is shown that any preassigned finite number of stable periodic motions of the traveling-wave type can coexist in the model.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Periodic traveling-wave-type solutions in circular chains of unidirectionally coupled equations
    S. D. Glyzin
    A. Yu. Kolesov
    N. Kh. Rozov
    Theoretical and Mathematical Physics, 2013, 175 : 499 - 517
  • [2] PERIODIC TRAVELING-WAVE-TYPE SOLUTIONS IN CIRCULAR CHAINS OF UNIDIRECTIONALLY COUPLED EQUATIONS
    Glyzin, S. D.
    Kolesov, A. Yu.
    Rozov, N. Kh.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 175 (01) : 499 - 517
  • [3] TRAVELING-WAVE SOLUTIONS AND THE COUPLED KORTEWEG-DEVRIES EQUATION
    GUHAROY, C
    BAGCHI, B
    SINHA, DK
    JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (10) : 2558 - 2560
  • [4] Autowave processes in continual chains of unidirectionally coupled oscillators
    S. D. Glyzin
    A. Yu. Kolesov
    N. Kh. Rozov
    Proceedings of the Steklov Institute of Mathematics, 2014, 285 : 81 - 98
  • [5] Autowave processes in continual chains of unidirectionally coupled oscillators
    Glyzin, S. D.
    Kolesov, A. Yu.
    Rozov, N. Kh.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 285 (01) : 81 - 98
  • [6] TRAVELING-WAVE AMPLIFIERS AND BACKWARD-WAVE OSCILLATORS
    MULLER, M
    PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1954, 42 (11): : 1651 - 1658
  • [7] MODE SUPPRESSION IN TRAVELING-WAVE UNSTABLE OSCILLATORS
    BUCZEK, CJ
    FREIBERG, RJ
    CHENAUSK.PP
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1973, 63 (04) : 503 - 503
  • [8] Rotary Traveling-Wave Oscillators, Analysis and Simulation
    Chen, Yulin
    Pedrotti, Kenneth D.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (01) : 77 - 87
  • [9] Traveling wave wave solutions in a chain of periodically forced coupled nonlinear oscillators
    Duanmu, M.
    Whitaker, N.
    Kevrekidis, P. G.
    Vainchtein, A.
    Rubin, J. E.
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 325 : 25 - 40
  • [10] Buffer phenomenon and chaos in circular chains of unidirectionally coupled oscillators
    Glyzin, S. D.
    Kolesov, A. Yu.
    Rozov, N. Kh.
    DOKLADY MATHEMATICS, 2014, 90 (01) : 509 - 512