Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: Implications for protein evolution in the RNA world

被引:123
作者
Aravind, L [1 ]
Anantharaman, V [1 ]
Koonin, EV [1 ]
机构
[1] Natl Lib Med, Natl Ctr Biotechnol Informat, Natl Inst Hlth, Bethesda, MD 20894 USA
关键词
HUP domain; last universal common ancestor (LUCA); class I aminoacyl-tRNA synthetases;
D O I
10.1002/prot.10064
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein sequence and structure comparisons show that the catalytic domains of Class I aminoacyl-tRNA synthetases, a related family of nucleotidyltransferases involved primarily in coenzyme biosynthesis, nucleotide-binding domains related to the UspA protein (USPA domains), photolyases, electron transport flavoproteins, and PP-loop-containing ATPases together comprise a distinct class of alpha/beta domains designated the HUP domain after HIGH-signature proteins, UspA, and PP-ATPase. Several lines of evidence are presented to support the monophyly of the HUP domains, to the exclusion of other three-layered alpha/beta folds with the generic "Rossmann-like" topology. Cladistic analysis, with patterns of structural and sequence similarity used as discrete characters, identified three major evolutionary lineages within the HUP domain class: the PP-ATPases; the HIGH superfamily, which includes class I aaRS and related nucleotidyltransferases containing the HIGH signature in their nucleotide-binding loop; and a previously unrecognized USPA-like group, which includes USPA domains, electron transport flavoproteins, and photolyases. Examination of the patterns of phyletic distribution of distinct families within these three major lineages suggests that the Last Universal Common Ancestor of all modern life forms encoded 15-18 distinct alpha/beta ATPases and nucleotide-binding proteins of the HUP class. This points to an extensive radiation of HUP domains before the last universal common ancestor (LUCA), during which the multiple class I aminoacyl-tRNA synthetases emerged only at a late stage. Thus, substantial evolutionary diversification of protein domains occurred well before the modern version of the protein-dependent translation machinery was established, i.e., still in the RNA world. (C) 2002 Wiley-Liss, Inc.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 60 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   Iterated profile searches with PSI-BLAST - a tool for discovery in protein databases [J].
Altschul, SF ;
Koonin, EV .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (11) :444-447
[3]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[4]   Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains [J].
Anantharaman, V ;
Koonin, EV ;
Aravind, L .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (05) :1271-1292
[5]   Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches [J].
Aravind, L ;
Koonin, EV .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 287 (05) :1023-1040
[6]   Toprim - a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins [J].
Aravind, L ;
Leipe, DD ;
Koonin, EV .
NUCLEIC ACIDS RESEARCH, 1998, 26 (18) :4205-4213
[7]   A TALE OF 2 SYNTHETASES [J].
ARTYMIUK, PJ ;
RICE, DW ;
POIRRETTE, AR ;
WILLET, P .
NATURE STRUCTURAL BIOLOGY, 1994, 1 (11) :758-760
[8]   THE CYTIDYLYLTRANSFERASE SUPERFAMILY - IDENTIFICATION OF THE NUCLEOTIDE-BINDING SITE AND FOLD PREDICTION [J].
BORK, P ;
HOLM, L ;
KOONIN, EV ;
SANDER, C .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1995, 22 (03) :259-266
[9]   A P-LOOP-LIKE MOTH IN A WIDESPREAD ATP PYROPHOSPHATASE DOMAIN - IMPLICATIONS FOR THE EVOLUTION OF SEQUENCE MOTIFS AND ENZYME-ACTIVITY [J].
BORK, P ;
KOONIN, EV .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1994, 20 (04) :347-355
[10]  
BURBAUM JJ, 1991, J BIOL CHEM, V266, P16965