The log-Sobolev inequality for weakly coupled lattice fields

被引:31
|
作者
Yoshida, N [1 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Div Math, Kyoto 6068502, Japan
关键词
D O I
10.1007/s004400050235
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a ferromagnetic spin system with unbounded interactions on the d-dimensional integer lattice (d greater than or equal to 1). Under mild assumptions on the one-body interactions (so that arbitrarily deep double wells are allowed), we prove that if the coupling constants are small enough, then the finite volume Gibbs states satisfy the log-Sobolev inequality uniformly in the volume and the boundary condition. Mathematics Subject Classification (1991): 60K35, 82B20.
引用
收藏
页码:1 / 40
页数:40
相关论文
共 50 条