Soluble tetratriphenylamine Zn phthalocyanine as Hole Transporting Material for Perovskite Solar Cells

被引:41
|
作者
Nouri, Esmaiel [1 ,4 ]
Krishna, Jonnadula Venkata Suman [2 ]
Kumar, Challuri Vijay [3 ,5 ]
Dracopoulos, Vassilios [3 ]
Giribabu, Lingamallu [2 ]
Mohammadi, Mohammad Reza [4 ]
Lianos, Panagiotis [1 ]
机构
[1] Univ Patras, Dept Chem Engn, Patras 26500, Greece
[2] Indian Inst Chem Technol, Inorgan & Phys Chem Div, Hyderabad 500007, Andhra Pradesh, India
[3] FORTH ICE HT, POB 1414, Patras 26504, Greece
[4] Sharif Univ Technol, Dept Mat Sci & Engn, Azadi Str, Tehran, Iran
[5] Univ Picardie Jules Verne, CNRS UMR 7314, Lab React & Chim Solides, 33 Rue St Leu, F-80039 Amiens, France
基金
美国国家科学基金会;
关键词
Perovskite; Solar cells; Hole transport material; Phthalocyanine; COPPER PHTHALOCYANINE; PERFORMANCE; STABILITY; EFFICIENT; LAYER;
D O I
10.1016/j.electacta.2016.11.052
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Perovskite solar cells have been constructed under the standard procedure by employing soluble tetratriphenylamine-substituted Zn phthalocyanine as hole transporting material. Solution processed device construction was carried out under ambient conditions of 50-60% ambient humidity. Triphenylamine substitution played the double role of imparting solubility to the core metal phthalocyanine as well as to introduce electron-rich ligands, which could enhance the role of Zn phthalocyanine as hole transporter. Indeed, the obtained material was functional. The present data highlight tetratriphenylamine-substituted Zn phthalocyanine as hole transporting material but also highlight the importance of the presence of a buffer layer between the perovskite layer and the hole transporting layer. Thus the efficiency of the cells was 9.0% in the absence but increased to 13.65% in the presence of Al2O3 buffer layer. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:875 / 880
页数:6
相关论文
共 50 条
  • [1] Synthesis and characterization of tetratriphenylamine Zn phthalocyanine as hole transporting material for perovskite solar cells
    Sfyri, Georgia
    Vamshikrishna, Narra
    Kumar, Challuri Vijay
    Giribabu, Lingamallu
    Lianos, Panagiotis
    SOLAR ENERGY, 2016, 140 : 60 - 65
  • [2] Soluble butyl substituted copper phthalocyanine as alternative hole-transporting material for solution processed perovskite solar cells
    Sfyri, Georgia
    Chen, Qian
    Lin, Yi-Wei
    Wang, Yu-Long
    Nouri, Esmaiel
    Xu, Zong-Xiang
    Lianos, Panagiotis
    ELECTROCHIMICA ACTA, 2016, 212 : 929 - 933
  • [3] Titanylphthalocyanine as hole transporting material for perovskite solar cells
    Mengna Sun
    Shirong Wang
    Yin Xiao
    Zhihao Song
    Xianggao Li
    Journal of Energy Chemistry, 2015, (06) : 756 - 761
  • [4] Subphthalocyanine as hole transporting material for perovskite solar cells
    Sfyri, Georgia
    Kumar, Challuri Vijay
    Sabapathi, Gokulnath
    Giribabu, Lingamallu
    Andrikopoulos, Konstantinos S.
    Stathatos, Elias
    Lianos, Panagiotis
    RSC ADVANCES, 2015, 5 (85) : 69813 - 69818
  • [5] Titanylphthalocyanine as hole transporting material for perovskite solar cells
    Mengna Sun
    Shirong Wang
    Yin Xiao
    Zhihao Song
    Xianggao Li
    Journal of Energy Chemistry, 2015, 24 (06) : 756 - 761
  • [6] Titanylphthalocyanine as hole transporting material for perovskite solar cells
    Sun, Mengna
    Wang, Shirong
    Xiao, Yin
    Song, Zhihao
    Li, Xianggao
    JOURNAL OF ENERGY CHEMISTRY, 2015, 24 (06) : 756 - 761
  • [7] Perovskite solar cell with low cost Cu-phthalocyanine as hole transporting material
    Kumar, Challuri Vijay
    Sfyri, Georgia
    Raptis, Dimitrios
    Stathatos, Elias
    Lianos, Panagiotis
    RSC ADVANCES, 2015, 5 (05) : 3786 - 3791
  • [8] Non-aggregated Zn(II)octa(2,6-diphenylphenoxy) phthalocyanine as a hole transporting material for efficient perovskite solar cells
    Ramos, F. Javier
    Ince, M.
    Urbani, M.
    Abate, Antonio
    Graetzel, M.
    Ahmad, Shahzada
    Torres, T.
    Nazeeruddin, Mohammad Khaja
    DALTON TRANSACTIONS, 2015, 44 (23) : 10847 - 10851
  • [9] Efficient perovskite solar cells employing a solution-processable copper phthalocyanine as a hole-transporting material
    Xiaoqing Jiang
    Ze Yu
    Jianbo Lai
    Yuchen Zhang
    Ning Lei
    Dongping Wang
    Licheng Sun
    Science China(Chemistry), 2017, 60 (03) : 423 - 430
  • [10] Efficient perovskite solar cells employing a solution-processable copper phthalocyanine as a hole-transporting material
    Xiaoqing Jiang
    Ze Yu
    Jianbo Lai
    Yuchen Zhang
    Ning Lei
    Dongping Wang
    Licheng Sun
    Science China Chemistry, 2017, 60 : 423 - 430