Energy-dependent spatial texturing of charge order in 1T-CuxTiSe2

被引:18
|
作者
Spera, M. [1 ]
Scarfato, A. [1 ]
Giannini, E. [1 ]
Renner, Ch [1 ]
机构
[1] Univ Geneva, Dept Quantum Matter Phys, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
基金
瑞士国家科学基金会;
关键词
INDUCED SUPERCONDUCTIVITY; TRANSITION;
D O I
10.1103/PhysRevB.99.155133
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report a detailed study of the microscopic effects of Cu intercalation on the charge density wave (CDW) in 1T-CuxTiSe2. Scanning tunneling microscopy and spectroscopy reveal a unique, Cu-driven spatial texturing of the charge-ordered phase, with the appearance of energy-dependent CDW patches and sharp pi-phase shift domain walls (pi DWs). The energy and doping dependencies of the patchwork are directly linked to the inhomogeneous potential landscape due to the Cu intercalants. They imply a CDW gap with unusual features, including a large amplitude, the opening below the Fermi level, and a shift to higher binding energy with electron doping. Unlike the patchwork, the, pi DWs occur independently of the intercalated Cu distribution. They remain atomically sharp throughout the investigated phase diagram and occur in both superconducting and nonsuperconducting specimens. These results provide unique atomic-scale insight into the CDW ground state, questioning the existence of incommensurate CDW domain walls and contributing to understanding its formation mechanism and interplay with superconductivity.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Stripe and Short Range Order in the Charge Density Wave of 1T-CuxTiSe2
    Novello, A. M.
    Spera, M.
    Scarfato, A.
    Ubaldini, A.
    Giannini, E.
    Bowler, D. R.
    Renner, Ch.
    PHYSICAL REVIEW LETTERS, 2017, 118 (01)
  • [2] Evolution of the electronic structure of 1T-CuxTiSe2
    Zhao, J. F.
    Ou, H. W.
    Wu, G.
    Xie, B. P.
    Zhang, Y.
    Shen, D. W.
    Wei, J.
    Yang, L. X.
    Dong, J. K.
    Arita, M.
    Namatame, H.
    Taniguchi, M.
    Chen, X. H.
    Feng, D. L.
    PHYSICAL REVIEW LETTERS, 2007, 99 (14)
  • [3] Honeycomb lattice type charge density wave associated with interlayer Cu ions ordering in 1T-CuxTiSe2
    Kitou, Shunsuke
    Kobayashi, Shintaro
    Kaneko, Tatsuya
    Katayama, Naoyuki
    Yunoki, Seiji
    Nakamura, Toshikazu
    Sawa, Hiroshi
    PHYSICAL REVIEW B, 2019, 99 (08)
  • [4] Charge-remote fragmentations are energy-dependent processes
    Cheng, CF
    Pittenauer, E
    Gross, ML
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1998, 9 (08) : 840 - 844
  • [5] Charge transport through DNA with energy-dependent decoherence
    Mohammad H.
    Anantram M.P.
    Physical Review E, 2023, 108 (04)
  • [6] AN ENERGY-DEPENDENT SPATIAL APPROXIMATION FOR TRANSPORT DEPLETION CALCULATIONS
    STANKOVSKI, Z
    SANCHEZ, R
    ROY, R
    ADVANCES IN NUCLEAR ENGINEERING COMPUTATION AND RADIATION SHIELDING, VOLS 1-2, 1989, : 813 - 822
  • [7] Energy-Dependent Charge Separation in Conjugated Polymer Electrolyte Complexes
    Clark-Winters, Tylar L. L.
    Bragg, Arthur E. E.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (26): : 12466 - 12476
  • [8] Observations of energy-dependent charge states in solar energetic particles
    Popecki, M. A.
    SOLAR ERUPTIONS AND ENERGETIC PARTICLES, 2006, 165 : 127 - 135
  • [9] ENERGY-DEPENDENT EXCITONIC INJECTION OF CHARGE INTO ANTHRACENE-CRYSTALS
    STRZELECKA, B
    GODLEWSKI, J
    KALINOWSKI, J
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1992, 169 (02): : 515 - 527
  • [10] Modeling the energy-dependent charge states of solar energetic particles
    Kocharov, Leon
    SOLAR ERUPTIONS AND ENERGETIC PARTICLES, 2006, 165 : 137 - 145