Critical behaviour in a non-local interface model

被引:0
|
作者
Beccaria, M
Campostrini, M
Feo, A
机构
[1] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy
[2] Univ Lecce, Dipartimento Fis, I-73100 Lecce, Italy
[3] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy
[4] Univ Pisa, Dipartimento Fis Enrico Fermi, I-56127 Pisa, Italy
[5] Univ Parma, Dipartimento Fis, I-43100 Parma, Italy
[6] Ist Nazl Fis Nucl, Grp COll Parma, I-43100 Parma, Italy
来源
关键词
D O I
10.1088/0305-4470/39/12/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Raise and Peel model is a recently proposed one-dimensional statistical model describing a fluctuating interface. The evolution of the model follows from the competition between adsorption and desorption processes. The model is non-local due to the possible occurrence of avalanches. At a special ratio of the adsorption-desorption rates, the model is integrable and many rigorous results are known. Off the critical point, the phase diagram and scaling properties are not known. In this paper, we search for indications of phase transition studying the gap in the spectrum of the non-Henrmitian generator of the stochastic interface evolution. We present results for the gap obtained from exact diagonalization and from Monte Carlo estimates derived from temporal correlations of various observables.
引用
收藏
页码:2909 / 2920
页数:12
相关论文
共 50 条
  • [1] The optimal interface profile for a non-local model of phase separation
    Cassandro, M
    Orlandi, E
    Picco, P
    NONLINEARITY, 2002, 15 (05) : 1621 - 1651
  • [2] A non-local damage model for the fatigue behaviour of metallic polycrystals
    Mareau, Charles
    PHILOSOPHICAL MAGAZINE, 2020, 100 (08) : 955 - 981
  • [3] Interface Conditions for a Phase Field Model with Anisotropic and Non-Local Interactions
    Xinfu Chen
    Gunduz Caginalp
    Emre Esenturk
    Archive for Rational Mechanics and Analysis, 2011, 202 : 349 - 372
  • [4] Interface Conditions for a Phase Field Model with Anisotropic and Non-Local Interactions
    Chen, Xinfu
    Caginalp, Gunduz
    Esenturk, Emre
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) : 349 - 372
  • [5] A non-local model for a swarm
    Alexander Mogilner
    Leah Edelstein-Keshet
    Journal of Mathematical Biology, 1999, 38 : 534 - 570
  • [6] A non-local model for a swarm
    Mogilner, A
    Edelstein-Keshet, L
    JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 38 (06) : 534 - 570
  • [7] Correlations and non-local transport in a critical-gradient fluctuation model
    Nicolau, J. H.
    Garcia, L.
    Carreras, B. A.
    JOINT VARENNA-LAUSANNE INTERNATIONAL WORKSHOP ON THE THEORY OF FUSION PLASMAS 2016, 2016, 775
  • [8] Interface identification by non-local autoionization transitions
    Barth, Silko
    Marburger, Simon
    Joshi, Sanjeev
    Ulrich, Volker
    Kugeler, Oliver
    Hergenhahn, Uwe
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (27) : 3218 - 3222
  • [9] Asymptotic behaviour for a non-local parabolic problem
    Liu Qilin
    Liang Fei
    Li Yuxiang
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2009, 20 : 247 - 267
  • [10] A non-local anisotropic model for phase transitions: asymptotic behaviour of rescaled energies
    Alberti, G
    Bellettini, G
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1998, 9 : 261 - 284