Paradoxes in laser heating of plasmonic nanoparticles

被引:48
|
作者
Luk'yanchuk, Boris S. [2 ]
Miroshnichenko, Andrey E. [1 ]
Tribelsky, Michael I. [3 ,4 ]
Kivshar, Yuri S. [1 ]
Khokhlov, Alexei R. [3 ,5 ]
机构
[1] Australian Natl Univ, Nonlinear Phys Ctr, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
[2] Agcy Sci Technol & Res, Data Storage Inst, Singapore 117608, Singapore
[3] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
[4] Moscow State Tech Univ Radioengn Elect & Automat, Moscow 119454, Russia
[5] AN Nesmeyanov Organoelement Cpds Inst, Moscow 119991, Russia
来源
NEW JOURNAL OF PHYSICS | 2012年 / 14卷
基金
俄罗斯基础研究基金会; 澳大利亚研究理事会;
关键词
ABSORPTION;
D O I
10.1088/1367-2630/14/9/093022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the problem of the laser heating of plasmonic nanoparticles and demonstrate that, in sharp contrast to the common belief, a particle with a small dissipative constant absorbs much more energy than the particle with a large value of this constant. Even higher effective absorption may be achieved for core-shell nanoparticles. Our analysis uses the exact Mie solutions, and optimization of the input energy is performed at a fixed fluence with respect to the particle size, wavelength and duration of the laser pulse. We introduce a new quantity, the effective absorption coefficient of a particle, which allows one to compare quantitatively the light absorption by nanoparticles with that of a bulk material. We describe a range of parameters where a giant absorption enhancement can be observed and give practical examples of metals whose optical properties vary from weak (potassium) to strong (platinum) dissipation.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Inverse problem in the hyperthermia therapy of cancer with laser heating and plasmonic nanoparticles
    Lamien, Bernard
    Barreto Orlande, Helcio Rangel
    Enrique Elicabe, Guillermo
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2017, 25 (04) : 608 - 631
  • [2] Laser Induced Plasmonic Heating with Au Decorated TiO2 Nanoparticles
    Belekoukia, Meltiani
    Tan, Jeannie Z. Y.
    Andresen, John M.
    Wang, Huizhi
    Maroto-Valer, M. Mercedes
    Xuan, Jin
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 5647 - 5652
  • [3] Plasmonic heating of gold nanoparticles and its exploitation
    Cortie, M
    Xu, XD
    Chowdhury, H
    Zareie, H
    Smith, G
    Smart Structures, Devices, and Systems II, Pt 1 and 2, 2005, 5649 : 565 - 573
  • [4] Plasmonic Heating of Copper Nanoparticles with Thermoresponsive Polymers
    Sakane, Shunya
    Anji, Toshiki
    Yamagishi, Itsuki
    Kohara, Issei
    Tanaka, Hideki
    CHEMISTRY LETTERS, 2023, 52 (07) : 582 - 585
  • [5] Local Heating Control of Plasmonic Nanoparticles for Different Incident Lights and Nanoparticles
    Chen, Meijie
    He, Yurong
    Hu, Yanwei
    Zhu, Jiaqi
    PLASMONICS, 2019, 14 (06) : 1893 - 1902
  • [6] Local Heating Control of Plasmonic Nanoparticles for Different Incident Lights and Nanoparticles
    Meijie Chen
    Yurong He
    Yanwei Hu
    Jiaqi Zhu
    Plasmonics, 2019, 14 : 1893 - 1902
  • [7] Nanolithography by Plasmonic Heating and Optical Manipulation of Gold Nanoparticles
    Fedoruk, Michael
    Meixner, Marco
    Carretero-Palacios, Sol
    Lohmueller, Theobald
    Feldmann, Jochen
    ACS NANO, 2013, 7 (09) : 7648 - 7653
  • [8] Time-harmonic optical heating of plasmonic nanoparticles
    Berto, Pascal
    Mohamed, Mohamed S. A.
    Rigneault, Herve
    Baffou, Guillaume
    PHYSICAL REVIEW B, 2014, 90 (03)
  • [9] Quantifying photothermal heating at plasmonic nanoparticles by scanning electrochemical microscopy
    Yu, Yun
    Williams, Jeffrey D.
    Willets, Katherine A.
    FARADAY DISCUSSIONS, 2018, 210 : 29 - 39
  • [10] Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles
    Guler, Urcan
    Ndukaife, Justus C.
    Naik, Gururaj V.
    Nnanna, A. G. Agwu
    Kildishev, Alexander V.
    Shalaev, Vladimir M.
    Boltasseva, Alexandra
    NANO LETTERS, 2013, 13 (12) : 6078 - 6083