The Zero-Truncated Poisson With Right Censoring: An Application to Translational Breast Cancer Research

被引:3
|
作者
Yeh, Hung-Wen [1 ]
Gajewski, Byron [1 ,2 ]
Mukhopadhyay, Purna [3 ]
Behbod, Fariba [4 ]
机构
[1] Univ Kansas, Med Ctr, Dept Biostat, Kansas City, KS 66160 USA
[2] Univ Kansas, Med Ctr, Sch Nursing, Kansas City, KS 66160 USA
[3] Arbor Res Collaborat Hlth, Ann Arbor, MI 48104 USA
[4] Univ Kansas, Med Ctr, Dept Pathol & Lab Med, Kansas City, KS 66160 USA
来源
关键词
Ductal carcinoma in situ; Positive counts; Power; Right censored; Small sample size; Zero-truncation; CARCINOMA IN-SITU; REGRESSION-MODEL; COUNT DATA; OVERDISPERSION; POPULATION; SIZE;
D O I
10.1080/19466315.2011.636279
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose to analyze positive count data with right censoring from Behbod et al. (2009) using the censored zero-truncated Poisson (CZTP) model. The comparison in truncated means across subgroups in each cell line is carried out through a log-linear model that links the un-truncated Poisson parameter and regression covariates. We also perform simulation to evaluate the performance of the CZTP model in finite and large sample sizes. In general, the CZTP model provides accurate and precise estimates. However, for data with small means and small sample sizes, it may be more proper to make inference based on the mean counts rather than on the regression coefficients. For small sample sizes and moderate means, the likelihood ratio test is more reliable than the Wald test. We also demonstrate how power analysis can be used to justify and/or guide the choice of censoring thresholds in study design. A SAS macro is provided in the Appendix for readers' reference.
引用
收藏
页码:252 / 263
页数:12
相关论文
共 50 条
  • [1] Zero-truncated Poisson-Lindley distribution and its application
    Ghitany, M. E.
    Al-Mutairi, D. K.
    Nadarajah, S.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (03) : 279 - 287
  • [2] A ZERO-TRUNCATED POISSON QUASI-LINDLEY DISTRIBUTION WITH APPLICATION
    Seghier, Fatma Zohra
    Zeghdoudi, Halim
    Berkane, Abdelhak
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2020, 16 (02): : 763 - 770
  • [3] Complementary Gamma Zero-Truncated Poisson Distribution and Its Application
    Niyomdecha, Ausaina
    Srisuradetchai, Patchanok
    MATHEMATICS, 2023, 11 (11)
  • [4] Degenerate Zero-Truncated Poisson Random Variables
    Kim, T.
    Kim, D. S.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2021, 28 (01) : 66 - 72
  • [5] Goodness of fit for the zero-truncated Poisson distribution
    Best, D. J.
    Rayner, J. C. W.
    Thas, O.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2007, 77 (07) : 585 - 591
  • [6] Degenerate Zero-Truncated Poisson Random Variables
    T. Kim
    D. S. Kim
    Russian Journal of Mathematical Physics, 2021, 28 : 66 - 72
  • [7] Zero-Truncated Poisson Exponentiated Gamma Distribution: Application and Estimation Methods
    Aguilar, Guilherme A. S.
    Moala, Fernando A.
    Cordeiro, Gauss M.
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2019, 13 (04)
  • [8] Zero-Truncated Poisson Exponentiated Gamma Distribution: Application and Estimation Methods
    Guilherme A. S. Aguilar
    Fernando A. Moala
    Gauss M. Cordeiro
    Journal of Statistical Theory and Practice, 2019, 13
  • [9] ON INTERVAL ESTIMATION OF THE POISSON PARAMETER IN A ZERO-TRUNCATED POISSON DISTRIBUTION
    Daidoji, Kasumi
    Iwasaki, Manabu
    JOURNAL JAPANESE SOCIETY OF COMPUTATIONAL STATISTICS, 2012, 25 (01): : 1 - 12
  • [10] Zero-Truncated Poisson-Power Function Distribution
    Okorie I.E.
    Akpanta A.C.
    Ohakwe J.
    Chikezie D.C.
    Onyemachi C.U.
    Rastogi M.K.
    Annals of Data Science, 2021, 8 (01) : 107 - 129