Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces

被引:290
|
作者
Franklin, Daniel [1 ,2 ]
Chen, Yuan [3 ]
Vazquez-Guardado, Abraham [2 ,3 ]
Modak, Sushrut [2 ,3 ]
Boroumand, Javaneh [1 ,2 ]
Xu, Daming [3 ]
Wu, Shin-Tson [3 ]
Chanda, Debashis [1 ,2 ,3 ]
机构
[1] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[2] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32826 USA
[3] Univ Cent Florida, CREOL, Coll Opt & Photon, Orlando, FL 32816 USA
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
基金
美国国家科学基金会;
关键词
FREQUENCY-SELECTIVE SURFACES; LIQUID-CRYSTALS; FULL-COLOR; DIFFRACTION LIMIT; PHOTONIC-CRYSTAL; ALIGNMENT; PIXELS;
D O I
10.1038/ncomms8337
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Structural colour arising from nanostructured metallic surfaces offers many benefits compared to conventional pigmentation based display technologies, such as increased resolution and scalability of their optical response with structure dimensions. However, once these structures are fabricated their optical characteristics remain static, limiting their potential application. Here, by using a specially designed nanostructured plasmonic surface in conjunction with high birefringence liquid crystals, we demonstrate a tunable polarization-independent reflective surface where the colour of the surface is changed as a function of applied voltage. A large range of colour tunability is achieved over previous reports by utilizing an engineered surface which allows full liquid crystal reorientation while maximizing the overlap between plasmonic fields and liquid crystal. In combination with imprinted structures of varying periods, a full range of colours spanning the entire visible spectrum is achieved, paving the way towards dynamic pixels for reflective displays.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces
    Daniel Franklin
    Yuan Chen
    Abraham Vazquez-Guardado
    Sushrut Modak
    Javaneh Boroumand
    Daming Xu
    Shin-Tson Wu
    Debashis Chanda
    Nature Communications, 6
  • [2] Polarization-Independent Tunable Reflector
    Deng, Tianwei
    Tan, Peng Khiang
    Huang, Ruifeng
    2014 16TH INTERNATIONAL SYMPOSIUM ON ANTENNA TECHNOLOGY AND APPLIED ELECTROMAGNETICS (ANTEM), 2014,
  • [3] Actively Tunable and Polarization-Independent Toroidal Resonance in Hybrid Metal-Vanadium Dioxide Metamaterial
    Shu, Chang
    Zhang, Chen
    Ye, Yulong
    Lin, Tongqing
    JOURNAL OF ELECTRONIC MATERIALS, 2023, 52 (01) : 691 - 696
  • [4] Actively Tunable and Polarization-Independent Toroidal Resonance in Hybrid Metal-Vanadium Dioxide Metamaterial
    Chang Shu
    Chen Zhang
    Yulong Ye
    Tongqing Lin
    Journal of Electronic Materials, 2023, 52 : 691 - 696
  • [5] Polarization-independent tunable fiber comb filter
    Lee, YW
    Han, KJ
    Jung, J
    Lee, B
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (09) : 2066 - 2068
  • [6] POLARIZATION-INDEPENDENT ACOUSTICALLY TUNABLE OPTICAL FILTER
    SMITH, DA
    BARAN, JE
    CHEUNG, KW
    JOHNSON, JJ
    APPLIED PHYSICS LETTERS, 1990, 56 (03) : 209 - 211
  • [7] Tunable Polarization-independent Absorber Using a Hybrid Plasmonic and Phase-change Chalcogenide Platform
    Hemmatyar, Omid
    Abdollahramezani, Sajjad
    Taghinejad, Hossein
    Adibi, Ali
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [8] Polarization-independent multi-peak plasmonic absorber
    Gomes de Souza, I. L.
    Rodriguez-Esquerre, V. F.
    PLASMONICS: DESIGN, MATERIALS, FABRICATION, CHARACTERIZATION, AND APPLICATIONS XV, 2017, 10346
  • [9] Tunable polarization-independent broadband absorber in the Terahertz regime
    Shi, Xingzhe
    Lu, Yuanfu
    Chen, Changshui
    Liu, Songhao
    Li, Guangyuan
    INFRARED, MILLIMETER-WAVE, AND TERAHERTZ TECHNOLOGIES VI, 2019, 11196
  • [10] Polarization-independent electrically tunable narrowband optical filters
    Wongcharoen, T
    Rahman, BMA
    Grattan, KTV
    EDMO - 1997 WORKSHOP ON HIGH PERFORMANCE ELECTRON DEVICES FOR MICROWAVE AND OPTOELECTRONIC APPLICATIONS, 1997, : 217 - 222