Fast parallel Hermite normal form computation of matrices over F[x]

被引:0
|
作者
Wagner, C [1 ]
机构
[1] Univ Karlsruhe, Rechenzentrum, Karlsruhe, Germany
来源
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present an algorithm for computing the Hermite normal form of a polynomial matrix and an unimodular transformation matrix on a distributed computer network. We provide an algorithm for reducing the off-diagonal entries which is a combination of the standard algorithm and the reduce off-diagonal algorithm given by Chou and Collins. This algorithm is parametrised by an integer variable. We provide a technique for producing small multiplier matrices if the input matrix is not full-rank, and give an upper bound for the degrees of the entries in the multiplier matrix.
引用
收藏
页码:821 / 830
页数:10
相关论文
共 50 条
  • [1] Fast computation of Hermite normal forms of random integer matrices
    Pernet, Clement
    Stein, William
    JOURNAL OF NUMBER THEORY, 2010, 130 (07) : 1675 - 1683
  • [2] FAST PARALLEL COMPUTATION OF HERMITE AND SMITH FORMS OF POLYNOMIAL-MATRICES
    KALTOFEN, E
    KRISHNAMOORTHY, MS
    SAUNDERS, BD
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1987, 8 (04): : 683 - 690
  • [3] Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrix
    Labahn, George
    Neiger, Vincent
    Zhou, Wei
    JOURNAL OF COMPLEXITY, 2017, 42 : 44 - 71
  • [4] On the computation of the Smith normal form of compound matrices
    Mitrouli, M
    Koukouvinos, C
    NUMERICAL ALGORITHMS, 1997, 16 (02) : 95 - 105
  • [5] On the computation of the Smith normal form of compound matrices
    M. Mitrouli
    C. Koukouvinos
    Numerical Algorithms, 1997, 16 : 95 - 105
  • [6] A Formal Proof of the Computation of Hermite Normal Form in a General Setting
    Divason, Jose
    Aransay, Jesus
    ARTIFICIAL INTELLIGENCE AND SYMBOLIC COMPUTATION (AISC 2018), 2018, 11110 : 37 - 53
  • [7] HERMITE NORMAL-FORM COMPUTATION USING MODULO DETERMINANT ARITHMETIC
    DOMICH, PD
    KANNAN, R
    TROTTER, LE
    MATHEMATICS OF OPERATIONS RESEARCH, 1987, 12 (01) : 50 - 59
  • [8] A polynomial-time algorithm to compute generalized Hermite normal forms of matrices over Z[x]
    Jing, Rui-Juan
    Yuan, Chun-Ming
    Gao, Xiao-Shan
    THEORETICAL COMPUTER SCIENCE, 2019, 755 : 89 - 109
  • [9] Hermite and Smith normal form algorithms over Dedekind domains
    Cohen, H
    MATHEMATICS OF COMPUTATION, 1996, 65 (216) : 1681 - 1699
  • [10] Solving integer or mixed linear programs using a Hermite normal form computation
    Maublanc, J
    Quilliot, A
    RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1997, 31 (04): : 399 - 427