Approximation of stochastic advection diffusion equations with Stochastic Alternating Direction Explicit methods

被引:5
|
作者
Soheili, Ali R. [1 ]
Arezoomandan, Mahdieh [2 ]
机构
[1] Ferdowsi Univ Mashhad, Sch Math Sci, Ctr Excellence Modeling & Control Syst, Mashhad, Iran
[2] Univ Sistan & Baluchestan, Dept Math, Zahedan, Iran
关键词
stochastic partial differential equation; finite difference method; alternating direction method; Saul'yev method; Liu method; convergence; consistency; stability; PARTIAL-DIFFERENTIAL EQUATIONS; SCHEMES;
D O I
10.1007/s10492-013-0022-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical solutions of stochastic partial differential equations of It type with time white noise process, using stable stochastic explicit finite difference methods are considered in the paper. Basically, Stochastic Alternating Direction Explicit (SADE) finite difference schemes for solving stochastic time dependent advection-diffusion and diffusion equations are represented and the main properties of these stochastic numerical methods, e.g. stability, consistency and convergence are analyzed. In particular, it is proved that when stable alternating direction explicit schemes for solving linear parabolic PDEs are developed to the stochastic case, they retain their unconditional stability properties applying to stochastic advection-diffusion and diffusion SPDEs. Numerically, unconditional stable SADE techniques are significant for approximating the solutions of the proposed SPDEs because they do not impose any restrictions for refining the computational domains. The performance of the proposed methods is tested for stochastic diffusion and advection-diffusion problems, and the accuracy and efficiency of the numerical methods are demonstrated.
引用
收藏
页码:439 / 471
页数:33
相关论文
共 50 条