Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran

被引:120
|
作者
Tan, Xuecai [1 ]
Hu, Qi
Wu, Jiawen
Li, Xiaoyu
Li, Pengfei
Yu, Huicheng
Li, Xiaoyan
Lei, Fuhou
机构
[1] Guangxi Univ Nationalit, Sch Chem & Chem Engn, Nanning 530008, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbofuran; Reduced graphene oxide and gold nanoparticles; Molecularly imprinted electrochemical sensor; Ethylene glycol maleic rosinate acrylate; MULTIWALLED CARBON NANOTUBES; LIQUID-CHROMATOGRAPHY; CARBAMATE PESTICIDES; RECOGNITION ELEMENT; MASS-SPECTROMETRY; FILM; ACETYLCHOLINESTERASE; NANOCOMPOSITES; COMPOSITE; METHYL;
D O I
10.1016/j.snb.2015.05.048
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A new molecularly imprinted electrochemical sensor was fabricated based on glassy carbon electrode decorated by reduced graphene oxide and gold nanoparticles (rGO@Au) for the detection of carbofuran (CBF). The molecularly imprinted polymers (MIPs) were prepared on the electrode surface with CBF as the template molecule, methyl acrylic acid as the functional monomer, and ethylene glycol maleic rosinate acrylate (EGMRA) as a cross-linker. The sensor was studied with respect to its response to hexacyanoferrate as a probe and characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under the optimum conditions, the peak current of the sensor and CBF concentration showed a good linear relationship over the range from 5.0 x 10(-8) to 2.0 x 10(-5) mol/L, with a detection limit of 2.0 x 10(-8) mol/L (SIN = 3). The sensor exhibited high adsorption capacity and good selectivity for CBF and it was successfully applied to the detection of CBF in real vegetable samples. (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:216 / 221
页数:6
相关论文
共 50 条
  • [1] D-mannitol sensor based on molecularly imprinted polymer on electrode modified with reduced graphene oxide decorated with gold nanoparticles
    Beluomini, Maisa Azevedo
    da Silva, Jose L.
    Sedenho, Graziela Cristina
    Stradiotto, Nelson Ramos
    TALANTA, 2017, 165 : 231 - 239
  • [2] Molecularly imprinted electrochemical sensor based on a reduced graphene modified carbon electrode for tetrabromobisphenol A detection
    Chen, Hong-Jun
    Zhang, Zhao-Hui
    Cai, Rong
    Kong, Xiang-Quan
    Chen, Xing
    Liu, Yu-Nan
    Yao, Shou-Zhuo
    ANALYST, 2013, 138 (09) : 2769 - 2776
  • [3] Electrochemical sensing of lactate by using an electrode modified with molecularly imprinted polymers, reduced graphene oxide and gold nanoparticles
    Thulio César Pereira
    Nelson Ramos Stradiotto
    Microchimica Acta, 2019, 186
  • [4] Electrochemical sensing of lactate by using an electrode modified with molecularly imprinted polymers, reduced graphene oxide and gold nanoparticles
    Pereira, Thulio Cesar
    Stradiotto, Nelson Ramos
    MICROCHIMICA ACTA, 2019, 186 (12)
  • [5] Electrochemical sensor for levofloxacin based on molecularly imprinted polypyrrole-graphene-gold nanoparticles modified electrode
    Wang, Fei
    Zhu, Lihua
    Zhang, Jingdong
    SENSORS AND ACTUATORS B-CHEMICAL, 2014, 192 : 642 - 647
  • [6] Electrochemical sensing of methylmalonic acid based on molecularly imprinted polymer modified with graphene oxide and gold nanoparticles
    Deepa, J. R.
    Anirudhan, T. S.
    Soman, Gowri
    Sekhar, V. Chithra
    MICROCHEMICAL JOURNAL, 2020, 159
  • [7] An electrochemical sensor for the determination of phoxim based on a graphene modified electrode and molecularly imprinted polymer
    Tan, Xuecai
    Wu, Jiawen
    Hu, Qi
    Li, Xiaoyu
    Li, Pengfei
    Yu, Huicheng
    Li, Xiaoyan
    Lei, Fuhou
    ANALYTICAL METHODS, 2015, 7 (11) : 4786 - 4792
  • [8] Electrochemical Sensor for Determination of Chlorpyrifos Based on Graphene Modified Electrode and Molecularly Imprinted Polymer
    Tan Xue-Cai
    Wu Jia-Wen
    Hu Qi
    Li Xiao-Yu
    Li Peng-Fei
    Yu Hui-Cheng
    Li Xiao-Yan
    Lei Fu-Hou
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2015, 43 (03) : 387 - 393
  • [9] Electrochemical sensor for picric acid by using molecularly imprinted polymer and reduced graphene oxide modified pencil graphite electrode
    Palanisamy Karthika
    Saravanakumar Shanmuganathan
    Subramanian Viswanathan
    Proceedings of the Indian National Science Academy, 2022, 88 : 263 - 276
  • [10] Electrochemical sensor for picric acid by using molecularly imprinted polymer and reduced graphene oxide modified pencil graphite electrode
    Karthika, Palanisamy
    Shanmuganathan, Saravanakumar
    Viswanathan, Subramanian
    PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY, 2022, 88 (03): : 263 - 276