Optimal shapes for adhesive binding between two elastic bodies

被引:35
|
作者
Yao, Haimin [1 ]
Gao, Huajian [1 ]
机构
[1] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
基金
中国国家自然科学基金;
关键词
adhesion; binding; contact mechanics; slip; intermolecular adhesion; friction; hankel transform;
D O I
10.1016/j.jcis.2005.12.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The pull-off force required to separate two elastic bodies in adhesive binding depends on the surface shapes of the corresponding binding regions on the two bodies. Given a fixed binding area A, the optimal shapes are those which give the maximum pull-off force sigma(th)A where sigma(th) is the theoretical strength of interactive forces between the two solids. Here we study closed form solutions to the optimal shapes for adhesive binding over a small circular region where slip is allowed whenever shear stress along the contact interface exceeds a critical value. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:564 / 572
页数:9
相关论文
共 50 条
  • [1] Optimal Control of Inclusion and Crack Shapes in Elastic Bodies
    Khludnev, A.
    Leugering, G.
    Specovius-Neugebauer, M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 155 (01) : 54 - 78
  • [2] Optimal Control of Inclusion and Crack Shapes in Elastic Bodies
    A. Khludnev
    G. Leugering
    M. Specovius-Neugebauer
    Journal of Optimization Theory and Applications, 2012, 155 : 54 - 78
  • [3] Optimal rigid inclusion shapes in elastic bodies with cracks
    Khludnev, A.
    Negri, M.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (01): : 179 - 191
  • [4] Optimal rigid inclusion shapes in elastic bodies with cracks
    A. Khludnev
    M. Negri
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 179 - 191
  • [5] Adhesive interaction of elastic bodies
    Goryacheva, IG
    Makhovskaya, YY
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2001, 65 (02): : 273 - 282
  • [6] Adhesive interaction of elastic bodies
    Goryacheva, I.G.
    Makhovskaya, Yu.Yu.
    Prikladnaya Matematika i Mekhanika, 2001, 65 (02): : 279 - 289
  • [7] Optimal matching between shapes via elastic deformations
    Younes, L
    IMAGE AND VISION COMPUTING, 1999, 17 (5-6) : 381 - 389
  • [8] Hertzian and adhesive plane models of contact of two inhomogeneous elastic bodies
    Antipov, Y. A.
    Mkhitaryan, S. M.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2023, 34 (04) : 667 - 700
  • [9] On crack propagation shapes in elastic bodies
    Brokate M.
    Khludnev A.
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2004, 55 (2): : 318 - 329
  • [10] On crack propagation shapes in elastic bodies
    Brokate, M
    Khludnev, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2004, 55 (02): : 318 - 329