MnO2 nanowires-decorated carbon fiber cloth as electrodes for aqueous asymmetric supercapacitor

被引:21
|
作者
Hong, Congcong [1 ]
Wang, Xing [1 ]
Yu, Houlin [1 ]
Wu, Huaping [2 ]
Wang, Jianshan [3 ]
Liu, Aiping [1 ,4 ]
机构
[1] Zhejiang Sci Tech Univ, Ctr Optoelect Mat & Devices, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Univ Technol, Minist Educ & Zhejiang Prov, Lab E&M, Hangzhou 310014, Zhejiang, Peoples R China
[3] Tianjin Univ, Dept Mech, Tianjin Key Lab Modern Engn Mech, Tianjin 300072, Peoples R China
[4] Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
MnO2; nanowires; carbon fiber cloth; supercapacitor; energy density; power density; HIGH-PERFORMANCE SUPERCAPACITORS; FACILE SYNTHESIS; ENERGY-STORAGE; NICKEL FOAM; ARRAYS; NANOSHEETS;
D O I
10.1142/S1793604718500340
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Manganese dioxide nanowires (MnO2 NWs) anchored on carbon fiber cloth (CFC) were fabricated through a simple hydrothermal reaction and used as integrated electrodes for supercapacitor. The morphology-dependent electrochemical performance of MnO2 NWs was confirmed, yielding good capacitance performance with a high specific capacitance of 3.88 F . cm(-2) at a charge discharge current density of 5 mA . cm(-2) and excellent stability of 91.5% capacitance retention after 3000 cycles. Moreover, the composite electrodes were used to fabricate supercapacitors, which showed a high specific capacitance of 194 mF . cm(-2) at a charge-discharge current density of 2 mA . cm(-2) and high energy density of 0.108 mWh . cm(-2) at power density of 2 mW . cm(-2), foreboding its potential application for high-performance supercapacitor.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes
    He, Ying
    Du, Shuangshuang
    Li, Huailong
    Cheng, Qilin
    Pavlinek, Vladimir
    Saha, Petr
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (05) : 1459 - 1467
  • [2] MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes
    Ying He
    Shuangshuang Du
    Huailong Li
    Qilin Cheng
    Vladimir Pavlinek
    Petr Saha
    Journal of Solid State Electrochemistry, 2016, 20 : 1459 - 1467
  • [3] Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor
    Demarconnay, L.
    Raymundo-Pinero, E.
    Beguin, F.
    JOURNAL OF POWER SOURCES, 2011, 196 (01) : 580 - 586
  • [4] A new asymmetric supercapacitor based on λ-MnO2 and activated carbon electrodes
    Xue, Yun
    Chen, Ye
    Zhang, Mi-Lin
    Yan, Yong-De
    MATERIALS LETTERS, 2008, 62 (23) : 3884 - 3886
  • [5] Carbon/λ-MnO2 composites for supercapacitor electrodes
    Malak-Polaczyk, A.
    Matei-Ghimbeu, C.
    Vix-Guterl, C.
    Frackowiak, E.
    JOURNAL OF SOLID STATE CHEMISTRY, 2010, 183 (04) : 969 - 974
  • [6] MnO2 Nanowires-Decorated Reduced Graphene Oxide Modified Glassy Carbon Electrode for Sensitive Determination of Bisphenol A
    Tian, Yaling
    Deng, Peihong
    Wu, Yiyong
    Li, Junhua
    Liu, Jun
    Li, Guangli
    He, Quanguo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (04)
  • [7] Flower-like MnO2 decorated activated multihole carbon as high-performance asymmetric supercapacitor electrodes
    Zhu, Shijin
    Cen, Wanglai
    Hao, Longlong
    Ma, Junjun
    Yu, Liang
    Zheng, Huaili
    Zhang, Yuxin
    MATERIALS LETTERS, 2014, 135 : 11 - 14
  • [8] Fiber-based MnO2/carbon nanotube/polyimide asymmetric supercapacitor
    Huang, Guangxi
    Zhang, Ye
    Wang, Lie
    Sheng, Peng
    Peng, Huisheng
    CARBON, 2017, 125 : 595 - 604
  • [9] Gold nanoparticles decorated MnO2 nanowires for high performance supercapacitor
    Khandare, Lina
    Terdale, Santosh
    APPLIED SURFACE SCIENCE, 2017, 418 : 22 - 29
  • [10] A novel fiber-shaped asymmetric supercapacitor prepared by twisting carbon fiber/carbon nanotube/MnO2 and carbon fiber/carbon nanotube/polypyrrole electrodes
    Cen, Tian
    Chen, Liang
    Zhang, Xuejun
    Tian, Yanhong
    Fan, Xinxiao
    ELECTROCHIMICA ACTA, 2021, 367