Dynamics of mobile coupled phase oscillators

被引:42
|
作者
Uriu, Koichiro [1 ,2 ,3 ]
Ares, Saul [3 ,4 ]
Oates, Andrew C. [2 ]
Morelli, Luis G. [2 ,3 ,5 ,6 ]
机构
[1] RIKEN Adv Sci Inst, Theoret Biol Lab, Wako, Saitama 3510198, Japan
[2] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[4] CSIC, Ctr Nacl Biotecnol, Log Genom Syst Lab, E-28049 Madrid, Spain
[5] Consejo Nacl Invest Cient & Tecn, Dept Fis, FCEyN UBA, RA-1428 Buenos Aires, DF, Argentina
[6] Consejo Nacl Invest Cient & Tecn, Dept Fis, IFIBA, RA-1428 Buenos Aires, DF, Argentina
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 03期
基金
欧洲研究理事会; 日本学术振兴会;
关键词
SYNCHRONIZATION; NETWORKS; PROMOTES; BIODIVERSITY; SEGMENTATION; POPULATIONS; MODEL;
D O I
10.1103/PhysRevE.87.032911
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the transient synchronization dynamics of locally coupled phase oscillators moving on a one-dimensional lattice. Analysis of spatial phase correlation shows that mobility speeds up relaxation of spatial modes and leads to faster synchronization. We show that when mobility becomes sufficiently high, it does not allow spatial modes to form and the population of oscillators behaves like a mean-field system. Estimating the relaxation timescale of the longest spatial mode and comparing it with systems with long-range coupling, we reveal how mobility effectively extends the interaction range. DOI: 10.1103/PhysRevE.87.032911
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Phase dynamics in nonlinear coupled oscillators
    Wang, KG
    Wang, J
    Yang, GJ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1997, 28 (02) : 179 - 186
  • [2] Phase and amplitude dynamics of nonlinearly coupled oscillators
    Cudmore, P.
    Holmes, C. A.
    CHAOS, 2015, 25 (02)
  • [3] Slowly coupled oscillators: Phase dynamics and synchronization
    Izhikevich, EM
    Hoppensteadt, FC
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (06) : 1935 - 1953
  • [4] Phase dynamics of coupled oscillators reconstructed from data
    Kralemann, Bjoern
    Cimponeriu, Laura
    Rosenblum, Michael
    Pikovsky, Arkady
    Mrowka, Ralf
    PHYSICAL REVIEW E, 2008, 77 (06):
  • [5] PHASE RESPONSE CURVES: ELUCIDATING THE DYNAMICS OF COUPLED OSCILLATORS
    Granada, A.
    Hennig, R. M.
    Ronacher, B.
    Kramer, A.
    Herzel, H.
    METHODS IN ENZYMOLOGY: COMPUTER METHODS, VOL 454, PT A, 2009, 454 : 1 - 27
  • [6] Average dynamics of a finite set of coupled phase oscillators
    Dima, German C.
    Mindlin, Gabriel B.
    CHAOS, 2014, 24 (02)
  • [7] Dynamics of four coupled phase-only oscillators
    Rand, Richard
    Wong, Jeffrey
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (03) : 501 - 507
  • [8] Collective dynamics of heterogeneously and nonlinearly coupled phase oscillators
    Xu, Can
    Tang, Xiaohuan
    Lu, Huaping
    Alfaro-Bittner, Karin
    Boccaletti, Stefano
    Perc, Matjaz
    Guan, Shuguang
    PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [9] Chimera dynamics in nonlocally coupled moving phase oscillators
    Wang, Wen-Hao
    Dai, Qiong-Lin
    Cheng, Hong-Yan
    Li, Hai-Hong
    Yang, Jun-Zhong
    FRONTIERS OF PHYSICS, 2019, 14 (04)
  • [10] Dynamics of dissipative topological defects in coupled phase oscillators
    Mahler, Simon
    Pal, Vishwa
    Tradonsky, Chene
    Chriki, Ronen
    Friesem, Asher A.
    Davidson, Nir
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2019, 52 (20)