A conic bundle degenerating on the Kummer surface

被引:7
|
作者
Bolognesi, Michele [1 ]
机构
[1] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
RANK-2; VECTOR-BUNDLES; CURVES; MODULI;
D O I
10.1007/s00209-008-0319-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a genus 2 curve and Su(C)(2) the moduli space of semi-stable rank 2 vector bundles on C with trivial determinant. In Bolognesi (Adv Geom 7(1): 113-144, 2007) we described the parameter space of non stable extension classes of the canonical sheaf omega of C by omega(-1). In this paper, we study the classifying rational map phi : PExt(1)(omega, omega(-1)) congruent to P-4 -> Su(C)(2) congruent to P-3 that sends an extension class to the corresponding rank two vector bundle. Moreover, we prove that, if we blow up P-4 along a certain cubic surface S and Su(C)(2) at the point p corresponding to the bundle O circle plus O, then the induced morphism (phi) over tilde : Bl(S) -> Bl(p)Su(C)(2) defines a conic bundle that degenerates on the blow up (at p) of the Kummer surface naturally contained in Su(C)(2). Furthermore we construct the P-2-bundle that contains the conic bundle and we discuss the stability and deformations of one of its components.
引用
收藏
页码:149 / 168
页数:20
相关论文
共 50 条
  • [1] A conic bundle degenerating on the Kummer surface
    Michele Bolognesi
    Mathematische Zeitschrift, 2009, 261 : 149 - 168
  • [2] Humbert's conic model and the Kummer surface
    Cohn, H
    NUMBER THEORY, 2004, : 133 - 147
  • [3] ON CONIC BUNDLE STRUCTURES
    SARKISOV, VG
    MATHEMATICS OF THE USSR-IZVESTIYA, 1982, 46 (02): : 355 - 390
  • [4] Fano threefolds with wild conic bundle structures
    Mori, S
    Saito, N
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2003, 79 (06) : 111 - 114
  • [5] ON THE CHOW GROUP AND THE INTERMEDIATE JACOBIAN OF A CONIC BUNDLE
    BELTRAMETTI, M
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1985, 141 : 331 - 351
  • [6] Degenerating Hermitian metrics and spectral geometry of the canonical bundle
    Bei, Francesco
    ADVANCES IN MATHEMATICS, 2018, 328 : 750 - 800
  • [7] A NEW LOOK AT KUMMER SURFACE
    EDGE, WL
    CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (05): : 952 - &
  • [8] A Generalization of the Dual Kummer Surface
    V. G. Lopez Neumann
    Constantin Manoil
    Results in Mathematics, 2009, 54 : 341 - 357
  • [9] SPHERICAL FUNCTORS ON THE KUMMER SURFACE
    Krug, Andreas
    Meachan, Ciaran
    NAGOYA MATHEMATICAL JOURNAL, 2015, 219 : 1 - 8
  • [10] CURVE CLASSES ON CONIC BUNDLE THREEFOLDS AND APPLICATIONS TO RATIONALITY
    Frei, Sarah
    Ji, Lena
    Sankar, Soumya
    Viray, Bianca
    Vogt, Isabel
    arXiv, 2022,