Sparse Coding Based Skin Lesion Segmentation Using Dynamic Rule-Based Refinement

被引:38
作者
Bozorgtabar, Behzad [1 ]
Abedini, Mani [1 ]
Garnavi, Rahil [1 ]
机构
[1] IBM Res Australia, Carlton, Vic, Australia
来源
MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2016 | 2016年 / 10019卷
关键词
Superpixel-based segmentation; Laplacian sparse coding; Dynamic rule-based refinement;
D O I
10.1007/978-3-319-47157-0_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an unsupervised skin lesion segmentation method for dermoscopy images by exploiting the contextual information of skin image at the superpixel level. In particular, a Laplacian sparse coding is presented to evaluate the probabilities of the skin image pixels to delineate lesion border. Moreover, a new rule-based smoothing strategy is proposed as the lesion segmentation refinement procedure. Finally, a multi-scale superpixel segmentation of the skin image is provided to handle size variation of the lesion in order to improve the accuracy of the detected border. Experiments conducted on two datasets show the superiority of our proposed method over several state-of-the-art skin segmentation methods.
引用
收藏
页码:254 / 261
页数:8
相关论文
共 19 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
Ahn E, 2015, IEEE ENG MED BIO, P3009, DOI 10.1109/EMBC.2015.7319025
[3]   Automatic Imaging System With Decision Support for Inspection of Pigmented Skin Lesions and Melanoma Diagnosis [J].
Alcon, Jose Fernandez ;
Ciuhu, Calina ;
ten Kate, Warner ;
Heinrich, Adrienne ;
Uzunbajakava, Natallia ;
Krekels, Gertruud ;
Siem, Denny ;
de Haan, Gerard .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2009, 3 (01) :14-25
[4]  
Cavalcanti P.G., 2010, P 2010 25 INT C IM V, P1
[5]   Border detection in dermoscopy images using statistical region merging [J].
Celebi, M. Emre ;
Kingravi, Hassan A. ;
Iyatomi, Hitoshi ;
Aslandogan, Y. Alp ;
Stoecker, William V. ;
Moss, Randy H. ;
Malters, Joseph M. ;
Grichnik, James M. ;
Marghoob, Ashfaq A. ;
Rabinovitz, Harold S. ;
Menzies, Scott W. .
SKIN RESEARCH AND TECHNOLOGY, 2008, 14 (03) :347-353
[6]  
Das Gupta M, 2015, PROC CVPR IEEE, P2700, DOI 10.1109/CVPR.2015.7298886
[7]   Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes [J].
Erkol, B ;
Moss, RH ;
Stanley, RJ ;
Stoecker, WV ;
Hvatum, E .
SKIN RESEARCH AND TECHNOLOGY, 2005, 11 (01) :17-26
[8]   Border detection in dermoscopy images using hybrid thresholding on optimized color channels [J].
Garnavi, Rahil ;
Aldeen, Mohammad ;
Celebi, M. Emre ;
Varigos, George ;
Finch, Sue .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2011, 35 (02) :105-115
[9]   Minimization of region-scalable fitting energy for image segmentation [J].
Li, Chunming ;
Kao, Chiu-Yen ;
Gore, Joint C. ;
Ding, Zhaohua .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (10) :1940-1949
[10]   Contextual Hypergraph Modeling for Salient Object Detection [J].
Li, Xi ;
Li, Yao ;
Shen, Chunhua ;
Dick, Anthony ;
van den Hengel, Anton .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :3328-3335