A Support Vector Machine-Based Genetic AlgorithmMethod for Gas Classification

被引:0
|
作者
Wang, Kun [3 ]
Ye, Wenbin [2 ]
Zhao, Xiaojin [2 ]
Pan, Xiaofang [1 ]
机构
[1] Shenzhen Univ, Coll Informat Engn, Shenzhen, Peoples R China
[2] Shenzhen Univ, Coll Elect Sci & Technol, Shenzhen, Peoples R China
[3] Shenzhen Univ, Coll Optoelect Engn, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
gas classification; support vector machine; genetic algorithm; inbreeding prevention; ELECTRONIC NOSE; DISCRIMINATION; REGRESSION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Support vector machine (SVM) now attracts increasing attention in gas classification due to its high performance towards small samples and nonlinearity problems of the dataset. Previously, the probable mismatch between the dataset and the training parameters determined by trial and error or grid search may hinder the exploration of the best result. In this paper, we propose a novel approach to estimate the most suitable training parameters, based on the inbreeding prevention of genetic algorithm (GA) by assigning the training model parameters of SVM as its chromosome. Treating the k-fold cross validation of SVM training as the objective function, our new method makes the population on the whole evolve towards the values that are more appropriate for the dataset. The inbreeding prevention mechanism (IPM) can protect the population from converging over-rapidly before reaching the optimum value. Compared with the standard SVM, the proposed method has greatly improved the prediction accuracy in both training data and testing data.
引用
收藏
页码:363 / 366
页数:4
相关论文
共 50 条
  • [1] Support vector machine-based image classification for genetic syndrome diagnosis
    David, A
    Lerner, B
    PATTERN RECOGNITION LETTERS, 2005, 26 (08) : 1029 - 1038
  • [2] Support Vector Machine-Based Classification Scheme of Maize Crop
    Athani, Suhas S.
    Tejeshwar, C. H.
    2017 7TH IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2017, : 84 - 88
  • [3] A tutorial on support vector machine-based methods for classification problems in chemometrics
    Luts, Jan
    Ojeda, Fabian
    Van de Plas, Raf
    De Moor, Bart
    Van Huffel, Sabine
    Suykens, Johan A. K.
    ANALYTICA CHIMICA ACTA, 2010, 665 (02) : 129 - 145
  • [4] Support Vector Machine-Based EMG Signal Classification Techniques: A Review
    Toledo-Perez, Diana C.
    Rodriguez-Resendiz, Juvenal
    Gomez-Loenzo, Roberto A.
    Jauregui-Correa, J. C.
    APPLIED SCIENCES-BASEL, 2019, 9 (20):
  • [5] Robustness of support vector machine-based classification of heart rate signals
    Kampouraki, Argyro
    Nikou, Christophoros
    Manis, George
    2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15, 2006, : 510 - 513
  • [6] Support Vector Machine-Based Classification of Malicious Users in Cognitive Radio Networks
    Khan, Muhammad Sajjad
    Khan, Liaqat
    Gul, Noor
    Amir, Muhammad
    Kim, Junsu
    Kim, Su Min
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2020, 2020
  • [7] Application of Support Vector Machine-Based Classification Extremum Method in Flexible Mechanism
    Bai, Bin
    Li, Ze
    Zhang, Junyi
    Zhang, Wei
    JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2020, 12 (04):
  • [8] A Support Vector Machine-Based Particle Filter Method for Improved Flooding Classification
    Insom, Patcharin
    Cao, Chunxiang
    Boonsrimuang, Pisit
    Liu, Di
    Saokarn, Apitach
    Yomwan, Peera
    Xu, Yunfei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (09) : 1943 - 1947
  • [9] A comprehensive support vector machine-based classification model for soil quality assessment
    Liu, Yong
    Wang, Huifeng
    Zhang, Hong
    Liber, Karsten
    SOIL & TILLAGE RESEARCH, 2016, 155 : 19 - 26
  • [10] Support vector machine-based ECG compression
    Szilagyi, S. M.
    Szilagyi, L.
    Benyo, Z.
    ANALYSIS AND DESIGN OF INTELLIGENT SYSTEMS USING SOFT COMPUTING TECHNIQUES, 2007, 41 : 737 - +