Series Representations at Special Values of Generalized Hurwitz-Lerch Zeta Function

被引:5
|
作者
Gaboury, S. [1 ]
Bayad, A. [2 ]
机构
[1] Univ Quebec Chicoutimi, Dept Math & Comp Sci, Chicoutimi, PQ G7H 2B1, Canada
[2] Univ Evry Val dEssonne, Dept Math, F-91037 Evry, France
关键词
APOSTOL-EULER POLYNOMIALS; INTEGRAL-REPRESENTATIONS; RATIONAL ARGUMENTS; BERNOULLI; FORMULAS;
D O I
10.1155/2013/975615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By making use of some explicit relationships between the Apostol-Bernoulli, Apostol-Euler, Apostol-Genocchi, and Apostol-Frobenius-Euler polynomials of higher order and the generalized Hurwitz-Lerch zeta function as well as a new expansion formula for the generalized Hurwitz-Lerch zeta function obtained recently by Gaboury and Bayad, in this paper we present some series representations for these polynomials at rational arguments. These results provide extensions of those obtained by Apostol (1951) and by Srivastava (2000).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A Series Representation for the Hurwitz-Lerch Zeta Function
    Reynolds, Robert
    Stauffer, Allan
    AXIOMS, 2021, 10 (04)
  • [2] On Generalized Hurwitz-Lerch Zeta Distributions
    Garg, Mridula
    Jain, Kumkum
    Kalla, S. L.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2009, 4 (01): : 26 - 39
  • [3] HYPERGEOMETRIC SERIES ASSOCIATED WITH THE HURWITZ-LERCH ZETA FUNCTION
    Bin-Saad, M. G.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2009, 78 (02): : 269 - 286
  • [4] Integral and computational representations of the extended Hurwitz-Lerch zeta function
    Srivastava, H. M.
    Saxena, Ram K.
    Pogany, Tibor K.
    Saxena, Ravi
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (07) : 487 - 506
  • [5] Remark on the Hurwitz-Lerch zeta function
    Choi, Junesang
    FIXED POINT THEORY AND APPLICATIONS, 2013, : 1 - 10
  • [6] On extended Hurwitz-Lerch zeta function
    Luo, Min-Jie
    Parmar, Rakesh Kumar
    Raina, Ravinder Krishna
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) : 1281 - 1304
  • [7] On the Hurwitz-Lerch zeta-function
    Kanemitsu S.
    Katsurada M.
    Yoshimoto M.
    aequationes mathematicae, 2000, 59 (1) : 1 - 19
  • [8] Remark on the Hurwitz-Lerch zeta function
    Junesang Choi
    Fixed Point Theory and Applications, 2013
  • [9] A generalization of the Hurwitz-Lerch Zeta function
    Choi, Junesang
    Jang, Douk Soo
    Srivastava, H. M.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (01) : 65 - 79
  • [10] An Extension of the Generalized Hurwitz-Lerch Zeta Function of Two Variables
    Choi, Junesang
    Parmar, Rakesh K.
    FILOMAT, 2017, 31 (01) : 91 - 96