Beam characterisation of the 1.5 T MRI-linac

被引:58
|
作者
Woodings, S. J. [1 ]
Bluemink, J. J. [1 ]
de Vries, J. H. W. [1 ]
Niatsetski, Y. [2 ]
van Veelen, B. [2 ]
Schillings, J. [2 ]
Kok, J. G. M. [1 ]
Wolthaus, J. W. H. [1 ]
Hackett, S. L. [1 ]
van Asselen, B. [1 ]
van Zijp, H. M. [1 ]
Pencea, S. [2 ]
Roberts, D. A. [2 ]
Lagendijk, J. J. W. [1 ]
Raaymakers, B. W. [1 ]
机构
[1] Univ Med Ctr Utrecht, Dept Radiotherapy, Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands
[2] Elekta AB, Stockholm, Sweden
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2018年 / 63卷 / 08期
关键词
radiotherapy; MRI-linac; dosimetry; unity; beam characterisation; commissioning; MAGNETIC-FIELD CORRECTION; REFERENCE DOSIMETRY; IONIZATION-CHAMBER; MONTE-CARLO; RADIOTHERAPY; ACCELERATOR; PHANTOM; IMPACT; PHOTON;
D O I
10.1088/1361-6560/aab566
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
As a prerequisite for clinical treatments it was necessary to characterize the Elekta 1.5 T MRI-linac 7 MV FFF radiation beam. Following acceptance testing, beam characterization data were acquired with Semiflex 3D (PTW 31021), microDiamond ( PTW 60019), and Farmer-type ( PTW 30013 and IBA FC65-G) detectors in an Elekta 3D scanning water phantom and a PTW 1D water phantom. EBT3 Gafchromic film and ion chamber measurements in a buildup cap were also used. Special consideration was given to scan offsets, detector effective points of measurement and avoiding air gaps. Machine performance has been verified and the system satisfied the relevant beam requirements of IEC60976. Beam data were acquired for field sizes between 1 x 1 and 57 x 22 cm(2). New techniques were developed to measure percentage depth dose (PDD) curves including the electron return effect at beam exit, which exhibits an electron-type practical range of 1.2 +/- 0.1 cm. The Lorentz force acting on the secondary charged particles creates an asymmetry in the crossline profiles with an average shift of +0.24 cm. For a 10 x 10 cm2 beam, scatter from the cryostat contributes 1% of the dose at isocentre. This affects the relative output factors, scatter factors and beam profiles, both in-field and out-of-field. The average 20%-80% penumbral width measured for small fields with a microDiamond detector at 10 cm depth is 0.50 cm. MRI-linac penumbral widths are very similar to that of the Elekta Agility linac MLC, as is the near-surface dose PDD(0.2 cm) = 57%. The entrance surface dose is similar to 36% of D-max. Cryostat transmission is quantified for inclusion within the treatment planning system. As a result, the 1.5 T MRI-linac 7 MV FFF beam has been characterised for the first time and is suitable for clinical use. This was a key step towards the first clinical treatments with the MRI-linac, which were delivered at University Medical Center Utrecht in May 2017.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] DOSIMETER CHARACTERISATION IN A MAGNETIC FIELD; DOSIMETRY FOR A 1.5 T MRI-LINAC HYBRID
    Smit, K.
    Kok, J.
    Raaymakers, B.
    Lagendijk, J.
    RADIOTHERAPY AND ONCOLOGY, 2011, 99 : S359 - S359
  • [2] Navigators for Motion Detection in the 1.5T MRI-linac
    Stam, M. K.
    Crijns, S. P. M.
    Lagendijk, J. J. W.
    Raaymakers, B. W.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2011, 81 (02): : S30 - S31
  • [3] Performance of a PTW 60019 microDiamond detector in a 1.5 T MRI-linac
    Woodings, S. J.
    Wolthaus, J. W. H.
    van Asselen, B.
    de Vries, J. H. W.
    Kok, J. G. M.
    Lagendijk, J. J. W.
    Raaymakers, B. W.
    PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (05):
  • [4] Acceptance procedure for the linear accelerator component of the 1.5 T MRI-linac
    Woodings, Simon J.
    de Vries, J. H. Wilfred
    Kok, Jan M. G.
    Hackett, Sara L.
    van Asselen, Bram
    Bluemink, Johanna J.
    van Zijp, Helena M.
    van Soest, Theo L.
    Roberts, David A.
    Lagendijk, Jan J. W.
    Raaymakers, Bas W.
    Wolthaus, Jochem W. H.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2021, 22 (08): : 45 - 59
  • [5] Verification of the MRI-Linac Beam Alignment
    Wolthaus, J. W. H.
    Bluemink, J. J.
    Woodings, S. J.
    Vries, J. H. W.
    van Soest, T. L.
    Kok, J. G. M.
    van Zijp, H. M.
    Hackett, S. S.
    van Asselen, B.
    Raaymakers, B. W.
    MEDICAL PHYSICS, 2018, 45 (06) : E399 - E399
  • [6] Treatment plan comparison between a 1.5 T MRI-Linac and a standard Linac for esophageal cancer
    Nachbar, M.
    Moennich, D.
    Kalwa, P.
    Zips, D.
    Thorwarth, D.
    Gani, C.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S158 - S159
  • [7] Preliminary scanning water phantom data for beam characterisation of a hybrid MRI-Linac
    Woodings, S.
    Van Zijp, H.
    Van Soest, T.
    Woodhead, P.
    Duglio, M.
    Marinos, N.
    Pencea, S.
    Roberts, D. A.
    Kok, J.
    Wolthaus, J. W. H.
    Raaymakers, B. W.
    RADIOTHERAPY AND ONCOLOGY, 2016, 119 : S394 - S394
  • [8] Technical feasibility of magnetic resonance fingerprinting on a 1.5T MRI-linac
    Bruijnen, T.
    van der Heide, O.
    Intven, M. P. W.
    Mook, S.
    Lagendijk, J. J. W.
    van den Berg, C. A. T.
    Tijssen, R. H. N.
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (22):
  • [9] Beam quality specifiers for an integrated MRI-linac
    O'Brien, D. J.
    Roberts, D. A.
    Towe, S.
    Ibbott, G.
    Sawakuchi, G. O.
    RADIOTHERAPY AND ONCOLOGY, 2016, 119 : S376 - S377
  • [10] Time management and hands-on experience with ELEKTA Unity 1.5T MRI-Linac
    Marks, C.
    Stolte, A.
    Thorwarth, D.
    Braun, L. H.
    Boeke, S.
    Wegener, D.
    Boldt, J.
    Ortinau, C.
    Kammler, M.
    Holl-Henkel, B.
    Gani, C.
    Zips, D.
    Nachbar, M.
    Dohm, O.
    Moennich, D.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S608 - S608