Scalarization method for Levitin-Polyak well-posedness of vectorial optimization problems

被引:11
|
作者
Zhu, Li [1 ]
Xia, Fu-quan [1 ]
机构
[1] Sichuan Normal Univ, Dept Math, Chengdu 610066, Sichuan, Peoples R China
基金
国家教育部博士点专项基金资助; 中国国家自然科学基金;
关键词
Levitin-Polyak well-posedness; Non-linear scalarization function; Optimization problems;
D O I
10.1007/s00186-012-0410-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we develop a method of study of Levitin-Polyak well-posedness notions for vector valued optimization problems using a class of scalar optimization problems. We first introduce a non-linear scalarization function and consider its corresponding properties. We also introduce the Furi-Vignoli type measure and Dontchev-Zolezzi type measure to scalar optimization problems and vectorial optimization problems, respectively. Finally, we construct the equivalence relations between the Levitin-Polyak well-posedness of scalar optimization problems and the vectorial optimization problems.
引用
收藏
页码:361 / 375
页数:15
相关论文
共 50 条