We obtain sharp conditions distinguishing extinction from persistence and provide sufficient conditions for global stability of a positive fixed point for a class of discrete time dynamical systems on the positive cone of an ordered Banach space generated by a map which is, roughly speaking, a nonlinear, rank one perturbation of a linear contraction. Such maps were considered by Rebarber, Tenhumberg, and Towney (Theor. Pop. Biol. 81, 2012) as abstractions of a restricted class of density dependent integral population projection models modeling plant population dynamics. Significant improvements of their results are provided.
机构:
Univ Nacl Educ Distancia, ETSI Ind, Dept Matemat Aplicada, C Juan del Rosal 12, E-28040 Madrid, SpainUniv Nacl Educ Distancia, ETSI Ind, Dept Matemat Aplicada, C Juan del Rosal 12, E-28040 Madrid, Spain
Franco, Daniel
Guiver, Chris
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, EnglandUniv Nacl Educ Distancia, ETSI Ind, Dept Matemat Aplicada, C Juan del Rosal 12, E-28040 Madrid, Spain
Guiver, Chris
Logemann, Hartmut
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, EnglandUniv Nacl Educ Distancia, ETSI Ind, Dept Matemat Aplicada, C Juan del Rosal 12, E-28040 Madrid, Spain
Logemann, Hartmut
Peran, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Educ Distancia, ETSI Ind, Dept Matemat Aplicada, C Juan del Rosal 12, E-28040 Madrid, SpainUniv Nacl Educ Distancia, ETSI Ind, Dept Matemat Aplicada, C Juan del Rosal 12, E-28040 Madrid, Spain