Neuromorphic Computation using Quantum-dot Cellular Automata

被引:0
|
作者
Blair, Enrique P. [1 ]
Koziol, Scott [1 ]
机构
[1] Baylor Univ, Elect & Comp Engn Dept, Waco, TX 76798 USA
关键词
quantum-dot; cellular automata; QCA; neuromorphic; ARCHITECTURE; NETWORK;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum-dot cellular automata (QCA) is a paradigm for low-power, general-purpose, classical computing beyond the transistor era. In classical QCA, the elementary device is a cell, a system of quantum dots with a few mobile charges occupying some dots. Device switching is achieved by quantum mechanical tunneling between dots, and cells are interconnected locally via the electrostatic field. Logic is constructed by laying out arrays of QCA cells on a two-dimensional substrate. Several different implementations of QCA exist. Neuromorphic computing is computing which mimics aspects of how our brains compute. This includes parallel processing using highly interconnected primitives which combine local processing and memory. Viable neuron-like devices suitable for neuromorphic computation require a weighted signal fan-in, a way to aggregate signals, and a spike (pulse) output mechanism. The inputs to a neuron can be "excitatory" or "inhibitory" which refers to their ability to encourage or discourage a neuron to fire. We briefly review the concept of QCA and discuss how QCA cells satisfy these requirements. Viable implementations for QCA-based neuromorphism, and challenges that exist for implementing neuromorphic devices in QCA also will be discussed.
引用
收藏
页码:328 / 331
页数:4
相关论文
共 50 条
  • [1] In memory computation using quantum-dot cellular automata
    Goswami, Mrinal
    Pal, Jayanta
    Roy Choudhury, Mayukh
    Chougule, Pritam P.
    Sen, Bibhash
    IET COMPUTERS AND DIGITAL TECHNIQUES, 2020, 14 (06): : 336 - 343
  • [2] Quantum-dot devices and quantum-dot cellular automata
    Porod, W
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1997, 334B (5-6): : 1147 - 1175
  • [3] Quantum-dot devices and quantum-dot cellular automata
    Porod, W
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (10): : 2199 - 2218
  • [4] Near Zero-Energy Computation Using Quantum-Dot Cellular Automata
    Torres, Frank Sill
    Niemann, Philipp
    Wille, Robert
    Drechsler, Rolf
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2020, 16 (01)
  • [5] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Amlani, I
    Bernstein, GH
    Lent, CS
    Merz, JL
    Porod, W
    MICROELECTRONIC ENGINEERING, 1999, 47 (1-4) : 261 - 263
  • [6] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Amlani, I
    Zuo, X
    Bernstein, GH
    Lent, CS
    Merz, JL
    Porod, W
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1999, 17 (04): : 1394 - 1398
  • [7] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Kummamuru, RK
    Ramasubramaniam, R
    Amlani, I
    Bernstein, GH
    Lent, CS
    CURRENT ISSUES IN HETEROEPITAXIAL GROWTH-STRESS RELAXATION AND SELF ASSEMBLY, 2002, 696 : 221 - 231
  • [8] Quantum-dot cellular automata
    Cole, T
    Lusth, JC
    PROGRESS IN QUANTUM ELECTRONICS, 2001, 25 (04) : 165 - 189
  • [9] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Kummamuru, R
    Timler, J
    Toth, G
    Bernstein, GH
    Lent, CS
    2004: 7TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUITS TECHNOLOGY, VOLS 1- 3, PROCEEDINGS, 2004, : 875 - 880
  • [10] Quantum-dot cellular automata
    Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
    Microelectron Eng, 1 (261-263):