Optical Nanoantennas for Multiband Surface-Enhanced Infrared and Raman Spectroscopy

被引:202
|
作者
D'Andrea, Cristiano [1 ,8 ]
Bochterle, Joerg [2 ,8 ]
Toma, Andrea [3 ]
Huck, Christian [2 ]
Neubrech, Frank [2 ,4 ]
Messina, Elena [1 ]
Fazio, Barbara [1 ]
Marago, Onofrio M. [1 ]
Di Fabrizio, Enzo [5 ,6 ,7 ]
de la Chapelle, Marc Lamy [8 ]
Gucciardi, Pietro G. [1 ]
Pucci, Annemarie [2 ]
机构
[1] CNR, IPCF, I-98156 Messina, Italy
[2] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany
[3] Ist Italian Tecnol, I-16163 Genoa, Italy
[4] Univ Stuttgart, Phys Inst 4, D-70569 Stuttgart, Germany
[5] KAUST, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[6] KAUST, BESE Div, Thuwal 239556900, Saudi Arabia
[7] Magna Graecia Univ Catanzaro, BIONEM Lab, I-88100 Germaneto Catanzaro, Italy
[8] Univ Paris 13, UFR SMBH, Lab CSPBAT, UMR 7244, F-93017 Bobigny, France
关键词
surface-enhanced Raman spectroscopy (SERS); surface-enhanced infrared spectroscopy (SEIRS); surface-enhanced infrared absorption (SEIRA); optical nanoantenna; plasmonics; methylene blue; spectroscopy nanosensor; METHYLENE-BLUE; VIBRATIONAL SPECTROSCOPY; NANOPARTICLE ARRAYS; GOLD NANOPARTICLES; PLASMON RESONANCE; REGULAR ARRAYS; SCATTERING; ABSORPTION; MONOLAYERS; ELECTRODES;
D O I
10.1021/nn4004764
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this article we show that linear nanoantennas can be used as shared substrates for surface-enhanced Raman and infrared spectroscopy (SERS and SEIRS, respectively). This is done by engineering the plasmonic properties of the nanoantennas, so to make them resonant in both the visible (transversal resonance) and the infrared (longitudinal resonance), and by rotating the excitation field polarization to selectively take advantage of each resonance and achieve SERS and SEIRS on the same nanoantennas. As a proof of concept, we have fabricated gold nanoantennas by electron beam lithography on calcium difluoride (1-2 mu m long, 60 nm wide, 60 nm high) that exhibit a transverse plasmonic resonance in the visible (640 nm) and a particularly strong longitudinal dipolar resonance in the infrared (tunable in the 1280-3100 cm(-1) energy range as a function of the length). SERS and SEIRS detection of methylene blue molecules adsorbed on the nanoantenna's surface is accomplished, with signal enhancement factors of 5 x 10(2) for SERS (electromagnetic enhancement) and up to 10(5) for SEIRS. Notably, we find that the field enhancement provided by the transverse resonance is sufficient to achieve SERS from single nanoantennas. Furthermore, we show that by properly tuning the nanoantenna length the signals of a multitude of vibrational modes can be enhanced with SEIRS. This simple concept of plasmonic nanosensor is highly suitable for integration on lab-on-a-chip schemes for label-free chemical and biomolecular identification with optimized performances.
引用
收藏
页码:3522 / 3531
页数:10
相关论文
共 50 条
  • [1] Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas
    Neubrech, Frank
    Huck, Christian
    Weber, Ksenia
    Pucci, Annemarie
    Giessen, Harald
    CHEMICAL REVIEWS, 2017, 117 (07) : 5110 - 5145
  • [2] Plasmonic DNA-Origami Nanoantennas for Surface-Enhanced Raman Spectroscopy
    Kuehler, Paul
    Roller, Eva-Maria
    Schreiber, Robert
    Liedl, Tim
    Lohmueller, Theobald
    Feldmann, Jochen
    NANO LETTERS, 2014, 14 (05) : 2914 - 2919
  • [3] Nanoantennas for Surface Enhanced Infrared Spectroscopy
    Neubrech, F.
    Klevenz, M.
    Meng, F.
    Pucci, A.
    PHYSICS AND ENGINEERING OF NEW MATERIALS, 2009, 127 : 321 - 325
  • [4] Nanoscale Multiband Surface-enhanced Raman Spectroscopy by Multiresonant Nanolaminate Plasmonics
    Nie, Meitong
    Zhao, Yuming
    Nam, Wonil
    Song, Junyeob
    Zhou, Wei
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [5] Resonant Surface-Enhanced Infrared Spectroscopy (Resonant SEIRA) Using Metal Nanoantennas
    Workman, Jerome, Jr.
    SPECTROSCOPY, 2021, 36 : 31 - 34
  • [6] Optical nanoantenna for beamed and surface-enhanced Raman spectroscopy
    Awasthi, Vimarsh
    Goel, Richa
    Agarwal, Shilpi
    Rai, Padmnabh
    Dubey, Satish Kumar
    JOURNAL OF RAMAN SPECTROSCOPY, 2020, 51 (11) : 2121 - 2145
  • [7] SURFACE-ENHANCED RAMAN-SPECTROSCOPY IN THE NEAR-INFRARED
    CHASE, DB
    PARKINSON, BA
    APPLIED SPECTROSCOPY, 1988, 42 (07) : 1186 - 1187
  • [8] Surface-enhanced Raman spectroscopy
    Nature Reviews Methods Primers, 1
  • [9] Surface-enhanced Raman Spectroscopy
    Tomoaki Nishino
    Analytical Sciences, 2018, 34 : 1061 - 1062
  • [10] Surface-enhanced Raman spectroscopy
    Jürgen Popp
    Thomas Mayerhöfer
    Analytical and Bioanalytical Chemistry, 2009, 394 : 1717 - 1718