Correcting Multivariate Auto-Regressive Models for the Influence of Unobserved Common Input

被引:0
|
作者
Gomez, Vicenc [1 ]
Gheshlaghi Azar, Mohammad [2 ]
Kappen, Hilbert J. [3 ]
机构
[1] Univ Pompeu Fabra, Dept Informat & Commun Technol, Barcelona, Spain
[2] Northwestern Univ, Rehabil Inst Chicago, Chicago, IL 60611 USA
[3] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Nijmegen, Netherlands
关键词
MVAR; common input; expectation maximization; connectivity; PARTIAL DIRECTED COHERENCE; STATE-SPACE MODELS; EM ALGORITHM; CONNECTIVITY; EEG;
D O I
10.3233/978-1-61499-696-5-177
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of inferring connectivity from time-series data under the presence of time-dependent common input originating from non-measured variables. We analyze a simple method to filter out the influence of such confounding variables in multivariate auto-regressive models (MVAR). The method learns the parameters of an extended MVAR model with latent variables. Using synthetic MVAR models we characterize where connectivity reconstruction is possible and useful and show that regularization is convenient when the common input has strong influence. We also illustrate how the method can be used to correct partial directed coherence, a causality measure used often in the neuroscience community.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 50 条
  • [1] ESTIMATION AND FORECASTING IN AUTO-REGRESSIVE MODELS
    MALINVAUD, E
    ECONOMETRICA, 1962, 30 (01) : 198 - 201
  • [2] Quantile approximations in auto-regressive portfolio models
    Ahcan, Ales
    Masten, Igor
    Polanec, Saso
    Perman, Mihael
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) : 1976 - 1983
  • [3] Auto-regressive model based input and parameter estimation for nonlinear finite element models
    Castiglione, Juan
    Astroza, Rodrigo
    Azam, Saeed Eftekhar
    Linzell, Daniel
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 143
  • [4] Facial expression recognition using auto-regressive models
    Dornaika, Fadi
    Davoine, Franck
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 520 - +
  • [5] Mixed frequency structural vector auto-regressive models
    Foroni, Claudia
    Marcellino, Massimiliano
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2016, 179 (02) : 403 - 425
  • [6] Damage Detection Using Vector Auto-Regressive Models
    Huang, Zongming
    Liu, Gang
    Todd, Michael
    Mao, Zhu
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2013, 2013, 8695
  • [7] Ship's optimal autopilot with a multivariate auto-regressive exogenous model
    Nguyen, DH
    Le, MD
    Ohtsu, K
    CONTROL APPLICATIONS OF OPTIMIZATION 2000, VOLS 1 AND 2, 2000, : 277 - 282
  • [8] An optimal ship autopilot using a multivariate auto-regressive exogenous model
    Nguyen, MM
    Nguyen, QT
    Dang, VP
    Tran, VL
    8TH IEEE INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL, PROCEEDINGS, 2004, : 701 - 706
  • [9] Revisit the Scalability of Deep Auto-Regressive Models for Graph Generation
    Yang, Shuai
    Shen, Xipeng
    Lim, Seung-Hwan
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [10] Interactive Character Control with Auto-Regressive Motion Diffusion Models
    Shi, Yi
    Wang, Jingbo
    Jiang, Xuekun
    Lin, Bingkun
    Dai, Bo
    Peng, Xue Bin
    ACM TRANSACTIONS ON GRAPHICS, 2024, 43 (04):