Finite rings;
Zero divisor graph;
GCD-Sum function;
INDEXES;
FAMILY;
D O I:
10.1080/02522667.2020.1745378
中图分类号:
G25 [图书馆学、图书馆事业];
G35 [情报学、情报工作];
学科分类号:
1205 ;
120501 ;
摘要:
A recent subject of study linking commutative ring theory with graph theory has been the concept of the zero divisor graph of a commutative ring. The zero divisor graph of a commutative ring exhibits a remarkable amount of graphical structure. Let G(R) be the zero divisor graph introduced by Beck [9], whose vertices are the elements of a ring R such that two distinct vertices x, y are adjacent provided that xy = 0. Let G(R) be the zero divisor graph introduced by Anderson, Livingston [5] whose vertices are the non-zero zero divisors of the ring R such that two distinct vertices x, y are adjacent provided that xy = 0. Here, the authors investigate the size of the graphs G(Z(n)), G(Z(n)).
机构:
Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, ItalyUniv Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
Sbarra, Enrico
Zanardo, Maurizio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, ItalyUniv Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy