MathWeb™:: A concurrent image analysis tool suite for multi-spectral data fusion

被引:8
|
作者
Achalakul, T [1 ]
Haaland, PD [1 ]
Taylor, S [1 ]
机构
[1] Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA
关键词
concurrent computing; image fusion; principal component transform; spectral signature;
D O I
10.1117/12.341358
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper describes a preliminary approach to the fusion of multi-spectral image data for the analysis of cervical cancer. The long-term goal of this research is to define spectral signatures and automatically detect cancer cell structures. The approach combines a multi-spectral microscope with an image analysis tool suite, MathWeb. The tool suite incorporates a concurrent Principal Component Transform (PCT) that is used to fuse the multi-spectral data. This paper describes the general approach and the concurrent PCT algorithm. The algorithm is evaluated from both the perspective of image quality and performance scalability.
引用
收藏
页码:351 / 358
页数:8
相关论文
共 50 条
  • [1] Automated hyper/multi-spectral image analysis tool
    Conant, JA
    Annen, KD
    ALGORITHMS FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY VII, 2001, 4381 : 150 - 153
  • [2] Research on Multi-spectral and Panchromatic Image Fusion
    Lai, Siyu
    Wang, Juan
    EMERGING RESEARCH IN ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, 2012, 315 : 132 - +
  • [3] The application of BEMD to multi-spectral image fusion
    Xu, Xiangnan
    Li, Hua
    Wang, Anna
    2007 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1-4, PROCEEDINGS, 2007, : 448 - 452
  • [4] Multi-spectral image fusion for visual display
    Peli, T
    Peli, E
    Ellis, K
    Stahl, R
    SENSOR FUSION: ARCHITECTURES, ALGORITHMS, AND APPLICATIONS III, 1999, 3719 : 359 - 368
  • [5] A review of fusion methods of multi-spectral image
    Bai, Luyi
    Xu, Changming
    Wang, Cong
    OPTIK, 2015, 126 (24): : 4804 - 4807
  • [6] Multi-spectral data fusion for target classification
    Momprive, S
    Favier, G
    Ducoulombier, M
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION VII, 1998, 3374 : 267 - 278
  • [7] Multi-spectral image fusion based on fractal features
    Jie, TA
    Chen, J
    Zhang, CH
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2004, PTS 1 AND 2, 2004, 5308 : 824 - 832
  • [8] Multi-spectral image fusion for application to visual prosthetics
    Kalpin, S
    Dagnelie, G
    Yang, L
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2004, 45 : U382 - U382
  • [9] Multi-spectral image fusion for moving object detection
    Wang, Pei
    Wu, Junsheng
    Fang, Aiqing
    Zhu, Zhixiang
    Wang, Chenwu
    INFRARED PHYSICS & TECHNOLOGY, 2024, 141
  • [10] Real-time multi-spectral image fusion
    Achalakul, T
    Taylor, S
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2001, 13 (12): : 1063 - 1081