Multiplicity of self-similar solutions for a critical equation

被引:18
|
作者
Furtado, Marcelo F. [1 ]
da Silva, Joao Pablo P. [2 ]
Xavier, Magda S. [3 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] Fed Univ Para, Dept Matemat, BR-66075110 Belem, PA, Brazil
[3] Univ Fed Espirito Santo, Dept Matemat, BR-29075910 Vitoria, ES, Brazil
关键词
Critical problems; Symmetric functionals; Self-similar solutions; CRITICAL SOBOLEV EXPONENTS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS;
D O I
10.1016/j.jde.2013.01.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the equation -Delta u-1/2(x.del u) = f(u) + beta vertical bar u vertical bar(2*-2)u, x is an element of R-N, with beta > 0, f superlinear and 2* := 2N/(N-2) for N >= 3. We prove that, for each k is an element of N, there exists beta* = beta* (k) > 0 such that the equation has at least k pairs of solutions provided beta is an element of (0, beta*). In the proof we use variational methods for the (even) functional associated to the equation. (C) 2013 Published by Elsevier Inc.
引用
收藏
页码:2732 / 2743
页数:12
相关论文
共 50 条
  • [1] On the multiplicity of self-similar solutions of the semilinear heat equation
    Polacik, P.
    Quittner, P.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 191
  • [2] Self-similar solutions for the Muskat equation
    Garcia-Juarez, Eduardo
    Gomez-Serrano, Javier
    Nguyen, Huy Q.
    Pausader, Benoit
    ADVANCES IN MATHEMATICS, 2022, 399
  • [3] Self-similar solutions for a semilinear heat equation with critical Sobolev exponent
    Naito, Yuki
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (03) : 1283 - 1315
  • [4] Self-similar solutions of the cubic wave equation
    Bizon, P.
    Breitenlohner, P.
    Maison, D.
    Wasserman, A.
    NONLINEARITY, 2010, 23 (02) : 225 - 236
  • [5] On self-similar solutions of the vortex filament equation
    Gamayun, O.
    Lisovyy, O.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (08)
  • [6] SELF-SIMILAR GROOVING SOLUTIONS TO THE MULLINS' EQUATION
    Kalantarova, Habiba, V
    Novick-Cohen, Amy
    QUARTERLY OF APPLIED MATHEMATICS, 2021, 79 (01) : 1 - 26
  • [7] Self-similar solutions of the Boltzmann equation and their applications
    Bobylev, AV
    Cercignani, C
    JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (5-6) : 1039 - 1071
  • [8] Convergence to self-similar solutions for a coagulation equation
    Philippe Laurençot
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2005, 56 : 398 - 411
  • [9] SELF-SIMILAR GROOVING SOLUTIONS TO THE MULLINS’ EQUATION
    Kalantarova H.V.
    Novick-Cohen A.
    Kalantarova, Habiba V. (kalantarova@campus.technion.ac.il), 1600, American Mathematical Society (79): : 1 - 26
  • [10] Self-similar solutions of a semilinear heat equation
    Choi, SY
    Kwak, M
    TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (01): : 125 - 133