High-temperature multiferroic magnetoelectric sensors

被引:7
|
作者
Yuan, Guoliang [1 ]
Xu, Rukai [1 ]
Wu, Hanzhou [1 ]
Xing, Yisong [1 ]
Yang, Chen [1 ]
Zhang, Rui [1 ]
Tang, Wenbin [1 ]
Wang, Yiping [2 ]
Wang, Yaojin [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Precis Driving Lab, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1063/5.0124352
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetoelectric (ME) sensors are an important tool to detect weak magnetic fields in the industry; however, to date, there are no high-quality ME sensors available for high-temperature environments such as engines, deep underground, and outer space. Here, a 0.364BiScO(3)-0.636PbTiO(3) piezoelectric ceramic and Terfenol-D alloy with a Curie temperature of 450 and 380 degrees C, respectively, were bonded together by an inorganic glue to achieve a high-temperature ME sensor. The ceramic shows a piezoelectric d(33) coefficient of 780 pC/N at 420 degrees C, and the inorganic glue has a high maximum stress of 9.12 MPa even at 300 degrees C. As a result, the sensor exhibits the maximum ME coefficient alpha(E) of 2.008, similar to 1.455, and similar to 0.906 V cm(-1) Oe(-1) at 20, 200, and 350 degrees C, respectively. Most importantly, the magnetic field detecting precision is as small as 42 nT at 20-350 degrees C. The ME sensor provides an effective solution for the detection of weak magnetic fields in harsh environments. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Large Polarization Switching and High-Temperature Magnetoelectric Coupling in Multiferroic GaFeO3 Systems
    Wang, Hui
    Zhang, Yang
    Tachiyama, Koki
    Xia, Zhaoyang
    Fang, Jinghong
    Li, Qin
    Cheng, Guofeng
    Shi, Yun
    Yu, Jianding
    Katayama, Tsukasa
    Yasui, Shintaro
    Itoh, Mitsuru
    INORGANIC CHEMISTRY, 2021, 60 (01) : 225 - 230
  • [2] High-temperature polymer based magnetoelectric nanocomposites
    Maceiras, A.
    Martins, P.
    Gonҫalves, R.
    Botelho, G.
    Venkata Ramana, E.
    Mendiratta, S.K.
    San Sebastián, M.
    Vilas, J.L.
    Lanceros-Mendez, S.
    León, L.M.
    European Polymer Journal, 2015, 64 : 224 - 228
  • [3] High-temperature polymer based magnetoelectric nanocomposites
    Maceiras, A.
    Martins, P.
    Goncalves, R.
    Botelho, G.
    Venkata Ramana, E.
    Mendiratta, S. K.
    San Sebastian, M.
    Vilas, J. L.
    Lanceros-Mendez, S.
    Leon, L. M.
    EUROPEAN POLYMER JOURNAL, 2015, 64 : 224 - 228
  • [4] High-temperature ceramic sensors
    Akbar, SA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 1 - IEC
  • [5] Strategies for room temperature multiferroic magnetoelectric oxides
    Rosseinsky, Matthew
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [6] SIC FOR SENSORS AND HIGH-TEMPERATURE ELECTRONICS
    MULLER, G
    KROTZ, G
    SENSORS AND ACTUATORS A-PHYSICAL, 1994, 43 (1-3) : 259 - 268
  • [7] Electrochemical High-Temperature Gas Sensors
    Saruhan, B.
    Stranzenbach, M.
    Yuece, A.
    Goenuellue, Y.
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS IV, 2012, 8373
  • [8] Drift in high-temperature FBG sensors
    Busboom, Axel
    Xia, Hua
    Lee, Boon K.
    Koste, Glen P.
    FOURTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS, 2010, 7653
  • [9] High-temperature semiconductor gas sensors
    Bene, R
    Pintér, Z
    Perczel, IV
    Fleischer, M
    Réti, F
    VACUUM, 2001, 61 (2-4) : 275 - 278
  • [10] Electrical response with temperature and magnetoelectric coupling of multiferroic nanocomposites
    Chakraborty, Sarit
    Mandal, S. K.
    FERROELECTRICS, 2021, 570 (01) : 15 - 30