Compatible lie brackets and the Yang-Baxter equation

被引:26
|
作者
Golubchik, IZ [1 ]
Sokolov, VV
机构
[1] Bashkir State Univ, Ufa 450074, Russia
[2] Russian Acad Sci, LD Landau Theoret Phys Inst, Moscow 117901, Russia
基金
俄罗斯基础研究基金会;
关键词
Yang-Baxter equation; Lie bialgebra; Manin triple;
D O I
10.1007/s11232-006-0016-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show, that any pair of compatible Lie brackets with a common invariant form produces a nonconstant solution of the classical Yang Baxter equation. We describe the corresponding Poisson brackets, Manin triples, and Lie bialgebras. It turns out that all bialgebras associated with the solutions found by Belavin and Drinfeld are isomorphic to some bialgebras generated by our solutions. For any compatible pair, we construct a double with a, common invariant form and find the corresponding solution of the quantum Yang Baxter equation for this double.
引用
收藏
页码:159 / 169
页数:11
相关论文
共 50 条