Regions of Interest in a Fundus Image Selection Technique Using the Discriminative Analysis Methods

被引:19
|
作者
Ilyasova, Nataly [1 ,2 ]
Paringer, Rustam [1 ,2 ]
Kupriyanov, Alexander [1 ,2 ]
机构
[1] Samara Natl Res Univ, Samara, Russia
[2] Russian Acad Sci, Image Proc Syst Inst, Branch Fed Sci Res Ctr, Crystallog & Photon, Samara, Russia
来源
COMPUTER VISION AND GRAPHICS, ICCVG 2016 | 2016年 / 9972卷
关键词
Fundus images; Image processing; Diagnostic features; Laser coagulation; Texture analysis; SEGMENTATION;
D O I
10.1007/978-3-319-46418-3_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A technique of formation of the effective features for the identification of regions of interest (ROI) in fundus images during laser coagulation is proposed. The technique is based on the texture analysis of selected image patterns. The analysis of informative value of obtained feature space and the selection of the most effective features is performed using the data discriminative analysis. The best values of image fragmentation dimensions for the image segmentation and the feature sets providing the precise identification required for regions of interest are determined herein.
引用
收藏
页码:408 / 417
页数:10
相关论文
共 50 条
  • [1] Searching Discriminative Regions for Convolutional Neural Networks in Fundus Image Classification With Genetic Algorithms
    Rong, Yibiao
    Lin, Tian
    Chen, Haoyu
    Fan, Zhun
    Chen, Xinjian
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 5949 - 5958
  • [2] Methods for Parkinson's rat model PET image analysis with regions of interest
    Topping, G. J.
    Dinelle, K.
    McCormick, S.
    Kornelsen, R.
    Sossi, V.
    2007 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-11, 2007, : 2917 - +
  • [3] The region of interest localization for glaucoma analysis from retinal fundus image using deep learning
    Mitra, Anirban
    Banerjee, Priya Shankar
    Roy, Sudipta
    Roy, Somasis
    Setua, Sanjit Kumar
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 165 : 25 - 35
  • [4] Statistical Significance in the Selection of the Regions of Interest for Parkinson Brain Image Processing
    Padilla, Pablo
    Ramirez, Javier
    Manuel Gorrez, Juan
    Salas-Gonzalez, Diego
    Alvarez-Illan, Ignacio
    INNOVATION IN MEDICINE AND HEALTHCARE 2014, 2014, 207 : 19 - 26
  • [5] Multiple description image coding using regions of interest
    Nystrom, Marcus
    Gibson, Jerry D.
    Anderson, John B.
    CONFERENCE RECORD OF THE FORTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1-5, 2007, : 925 - +
  • [6] Fundus Image Enhancement Using EAL-CLAHE Technique
    Chandni, P. Raja Rajeswari
    Justin, Judith
    Vanithamani, R.
    ADVANCES IN DATA AND INFORMATION SCIENCES, 2022, 318 : 613 - 624
  • [7] Image Correction Methods for Regions of Interest in Liver Cirrhosis Classification on CNNs
    Mitani, Yoshihiro
    Fisher, Robert B.
    Fujita, Yusuke
    Hamamoto, Yoshihiko
    Sakaida, Isao
    SENSORS, 2022, 22 (09)
  • [8] Diabetic Retinopathy Fundus Image Classification Using Ensemble Methods
    Lukashevich, Marina M.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2024, 34 (02) : 331 - 339
  • [9] Image compression using object-based regions of interest
    Han, Sunhyoung
    Vasconcelos, Nuno
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 3097 - +
  • [10] An adaptive enhancement and fovea detection technique for color fundus image analysis
    Gopinath Palanisamy
    Palanisamy Ponnusamy
    Varun P. Gopi
    Signal, Image and Video Processing, 2023, 17 : 831 - 838