Asymptotic stabilization of uniform motion in Hamiltonian systems

被引:0
|
作者
Burkov, IV [1 ]
机构
[1] St Petersburg State Polytech Univ, Dept Higher Math, St Petersburg 195251, Russia
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In some cases a desired motion can be described by two first integrals of the system with zero control input. These two integrals are used to construct Lyapunov function. The control is designed from the condition of decreasing Lyapunov function on the trajectories of the closed loop system. This control may be a priori bounded. This method is applied to stabilize rotating body beam, for damping the oscillations of blades of an elastic propeller, for stabilization of permanent rotation of a rigid body with fixed point and for stabilization of the uniform transition of a hanging pendulum on a cart.
引用
收藏
页码:22 / 26
页数:5
相关论文
共 50 条
  • [1] Asymptotic stabilization of desired rotation in multidimensional Hamiltonian systems by Chetaev method
    Burkov, IV
    Fourth International Workshop on Multidimensional Systems - NDS 2005, 2005, : 229 - 234
  • [2] Asymptotic stabilization via control by interconnection of port-Hamiltonian systems
    Castanos, Fernando
    Ortega, Romeo
    van der Schaft, Arjan
    Astolfi, Alessandro
    AUTOMATICA, 2009, 45 (07) : 1611 - 1618
  • [3] Uniform Asymptotic Stabilization of Affine Periodic Discrete-Time Systems
    Czornik, Adam
    Makarov, Evgenii
    Niezabitowski, Michal
    Popova, Svetlana
    Zaitsev, Vasilii
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 4646 - 4652
  • [4] Asymptotic stabilization with phase of periodic orbits of three-dimensional Hamiltonian systems
    Tudoran, Razvan M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 121 : 33 - 41
  • [5] Asymptotic stabilization of Hamiltonian systems based on - La Salle's invariance principle
    Yamada, A
    Yamakawa, S
    Fujimoto, H
    SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 1423 - 1427
  • [6] Uniform Global Asymptotic Stabilization of Semilinear Periodic Discrete-Time Systems
    Czornik, Adam
    Makarov, Evgenii
    Niezabitowski, Michal
    Popova, Svetlana
    Zaitsev, Vasilii
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (07) : 3598 - 3605
  • [7] STABILIZATION OF HAMILTONIAN-SYSTEMS
    VANDERSCHAFT, AJ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (10) : 1021 - 1035
  • [8] On stabilization of energy for Hamiltonian systems
    Wu, X.
    Zhu, J. F.
    He, J. Z.
    Zhang, H.
    COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (01) : 15 - 24
  • [9] Stabilization of Hamiltonian systems with dissipation
    Cheng, DZ
    Spurgeon, S
    INTERNATIONAL JOURNAL OF CONTROL, 2001, 74 (05) : 465 - 473
  • [10] STOCHASTIC HAMILTONIAN EQUATION WITH UNIFORM MOTION AREA
    Liang, Song
    DYNAMIC SYSTEMS AND APPLICATIONS, 2013, 22 (04): : 557 - 589