GMETA: A Generic Formal Metatheory Framework for First-Order Representations

被引:0
|
作者
Lee, Gyesik [1 ]
Oliveira, Bruno C. D. S. [2 ]
Cho, Sungkeun [2 ]
Yi, Kwangkeun [2 ]
机构
[1] Hankyong Natl Univ, Ausung city, South Korea
[2] Seoul Natl Univ, ROSAEC Ctr, Seoul 151, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Mechanization; variable binding; first-order representations; POPLmark challenge; datatype-generic programming; Coq;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents GMETA: a generic framework for first-order representations of variable binding that provides once and for all many of the so-called infrastructure lemmas and definitions required in mechanizations of formal metatheory. The key idea is to employ datatype-generic programming (DGP) and modular programming techniques to deal with the infrastructure overhead. Using a generic universe for representing a large family of object languages we define datatype-generic libraries of infrastructure for first-order representations such as locally nameless or de Bruijn indices. Modules are used to provide templates: a convenient interface between the datatype-generic libraries and the end-users of GMeta. We conducted case studies based on the POPLmark challenge, and showed that dealing with challenging binding constructs, like the ones found in System F<:, is possible with GMeta. All of GMETA's generic infrastructure is implemented in the Coq theorem prover. Furthermore, due to GMETA's modular design, the libraries can be easily used, extended, and customized by users.
引用
收藏
页码:436 / 455
页数:20
相关论文
共 50 条
  • [1] GENERIC COMPLEXITY OF FIRST-ORDER THEORIES
    Rybalov, A. N.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2011, 8 : 168 - 178
  • [2] Is there an optimal generic semantics for first-order equations?
    Smaus, JG
    LOGIC PROGRAMMING, PROCEEDINGS, 2003, 2916 : 438 - 450
  • [3] Formal topologies on the set of first-order formulae
    Coquand, T
    Sadocco, S
    Sambin, G
    Smith, JM
    JOURNAL OF SYMBOLIC LOGIC, 2000, 65 (03) : 1183 - 1192
  • [4] A controllability test for general first-order representations
    Helmke, U
    Rosenthal, J
    Schumacher, JM
    AUTOMATICA, 1997, 33 (02) : 193 - 201
  • [5] The first-order flexibility of a crystallographic framework
    Kastis, E.
    Power, S. C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 504 (01)
  • [6] Generic Properties of First-Order Mean Field Games
    Bressan, Alberto
    Nguyen, Khai T. T.
    DYNAMIC GAMES AND APPLICATIONS, 2023, 13 (03) : 750 - 782
  • [7] Generic Properties of First-Order Mean Field Games
    Alberto Bressan
    Khai T. Nguyen
    Dynamic Games and Applications, 2023, 13 : 750 - 782
  • [8] First-order representations of discrete linear multidimensional systems
    Zerz, E
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2000, 11 (04) : 359 - 380
  • [9] A first-order probabilistic logic with application to measurement representations
    Rossi, Giovanni B.
    Crenna, Francesco
    MEASUREMENT, 2016, 79 : 251 - 259
  • [10] Formal Metatheory of Second-Order Abstract Syntax
    Fiore, Marcelo
    Szamozvancev, Dmitrij
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2022, 6 (POPL):