A CLASS OF SOLVABLE LIE ALGEBRAS WITH TRIANGULAR DECOMPOSITIONS

被引:3
|
作者
Chen, Liang [1 ]
机构
[1] Furen Educ Ctr, Richmond, BC V7E 1M9, Canada
关键词
Lie algebra; Solvable;
D O I
10.1080/00927872.2010.526679
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article introduces a class of solvable Lie algebras with triangular decompositions. The definition of the triangular decomposition in this article is a slight extension of the one given in [1]. It is proved that each of these Lie algebras is determined by an even integer sequence. The highest weight representations of these Lie algebras are also discussed.
引用
收藏
页码:2285 / 2300
页数:16
相关论文
共 50 条
  • [1] AUTOMORPHISMS OF A CLASS OF SOLVABLE LIE ALGEBRAS WITH TRIANGULAR DECOMPOSITIONS
    Chen, Liang
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (10) : 3889 - 3909
  • [2] On Certain Decompositions of Solvable Lie Algebras
    Towers, David A.
    JOURNAL OF LIE THEORY, 2014, 24 (04) : 969 - 978
  • [3] Solvable Lie algebras with triangular nilradicals
    Tremblay, S
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02): : 789 - 806
  • [4] Invariants of the nilpotent and solvable triangular Lie algebras
    Tremblay, S
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42): : 9085 - 9099
  • [5] A Study on the Centroid of a Class of Solvable Lie Algebras
    Yu, Demin
    Jiang, Chan
    Ma, Jiejing
    SYMMETRY-BASEL, 2023, 15 (07):
  • [6] FRATTINI SUBALGEBRAS OF A CLASS OF SOLVABLE LIE ALGEBRAS
    Stitzinger, EL
    PACIFIC JOURNAL OF MATHEMATICS, 1970, 34 (01) : 177 - 182
  • [7] A class of solvable Lie algebras and their Casimir invariants
    Snobl, L
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (12): : 2687 - 2700
  • [8] SOLVABLE EXTENSIONS OF A SPECIAL CLASS OF NILPOTENT LIE ALGEBRAS
    Shabanskaya, A.
    Thompson, G.
    ARCHIVUM MATHEMATICUM, 2013, 49 (03): : 141 - 159
  • [9] Solvable extensions of a class of nilpotent linear Lie algebras
    Wang, Dengyin
    Ge, Hui
    Li, Xiaowei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (01) : 14 - 25
  • [10] Invariants of solvable Lie algebras with triangular nilradicals and diagonal nilindependent elements
    Boyko, Vyacheslav
    Patera, Jiri
    Popovych, Roman
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (04) : 834 - 854