On asymptotic distribution and asymptotic efficiency of least squares estimators of spatial variogram parameters

被引:52
|
作者
Lahiri, SN
Lee, YD
Cressie, N
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
asymptotic efficiency; infill sampling; spatial processes; variogram; weighted least squares estimators;
D O I
10.1016/S0378-3758(01)00198-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider the least-squares approach for estimating parameters of a spatial variograin and establish consistency and asymptotic normality of these estimators under general conditions. Large-sample distributions are also established under a spatial regression model where the sampling design possibly has an infill sampling component. These results allow us to investigate efficiencies of different least squares variogram-parameter estimators in large samples, We provide two necessary and sufficient conditions for these estimators to be asymptotically efficient, It is an interesting consequence of our results that when the number of lags used to define the estimators is chosen to be equal to the number of variogram parameters to be estimated, the ordinary least squares estimator, the weighted least squares and the generalized least squares estimators are all asymptotically efficient. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:65 / 85
页数:21
相关论文
共 50 条
  • [1] ON ASYMPTOTIC EFFICIENCY OF LEAST SQUARES ESTIMATORS
    VILLEGAS, C
    ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06): : 1676 - &
  • [2] Asymptotic efficiency of conditional least squares estimators for ARCH models
    Amano, Tomoyuki
    Taniguchi, Masanobu
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (02) : 179 - 185
  • [3] Asymptotic properties of the least squares estimators of the parameters of the chirp signals
    Swagata Nandi
    Debasis Kundu
    Annals of the Institute of Statistical Mathematics, 2004, 56 : 529 - 544
  • [4] Asymptotic properties of the least squares estimators of the parameters of the chirp signals
    Nandi, S
    Kundu, D
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2004, 56 (03) : 529 - 544
  • [5] On the asymptotic distribution of the least-squares estimators in unidentifiable models
    Hayasaka, T
    Kitahara, M
    Usui, S
    NEURAL COMPUTATION, 2004, 16 (01) : 99 - 114
  • [6] Asymptotic least squares estimators for dynamic games
    Pesendorfer, Martin
    Schmidt-Dengler, Philipp
    REVIEW OF ECONOMIC STUDIES, 2008, 75 (03): : 901 - 928
  • [7] Asymptotic Properties of Least Squares Estimators and Sequential Least Squares Estimators of a Chirp-like Signal Model Parameters
    Grover, Rhythm
    Kundu, Debasis
    Mitra, Amit
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2021, 40 (11) : 5421 - 5465
  • [8] On the asymptotic distribution of the least squares estimators for non-indentified models
    Hayasaka, T
    Kitahara, M
    Hagiwara, K
    Toda, N
    Usui, S
    KNOWLEDGE-BASED INTELLIGENT INFORMATION ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, PTS 1 AND 2, 2001, 69 : 1580 - 1584
  • [9] Correction to: Asymptotic Properties of Least Squares Estimators and Sequential Least Squares Estimators of a Chirp-like Signal Model Parameters
    Rhythm Grover
    Debasis Kundu
    Amit Mitra
    Circuits, Systems, and Signal Processing, 2021, 40 : 5466 - 5467
  • [10] Asymptotic theory of the least squares estimators of sinusoidal signal
    Kundu, D
    STATISTICS, 1997, 30 (03) : 221 - 238