Phase contrast imaging of waves and instabilities in high temperature magnetized fusion plasmas

被引:48
|
作者
Porkolab, M [1 ]
Rost, JC [1 ]
Basse, N [1 ]
Dorris, J [1 ]
Edlund, E [1 ]
Lin, L [1 ]
Lin, YJ [1 ]
Wukitch, S [1 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
关键词
phase contrast imaging; plasmas; tokamak plasmas; turbulence; waves;
D O I
10.1109/TPS.2006.872181
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Phase contrast imaging (PCI) is an internal reference beam interferometry technique which provides a direct image of line integrated plasma density fluctuations. The method has been used with great success to measure waves and turbulence in magnetically confined high temperature plasmas. The principle of PCI was developed in optics in the 1930s by the Dutch physicist Zernike, leading to the development of phase-contrast microscopy [1], [17]. The technique allows one to detect the variation of the index of refraction of a dielectric medium (such as a plasma) due to the presence of waves or turbulent fluctuations. The image produced by the introduction of a phase plate in the beam path, and subsequently imaging the expanded laser beam onto a detector array can be used to calculate wavelengths and correlation lengths of fluctuations in high temperature plasmas. In this paper, the principle of PCI is summarized and examples of measurements from the DIII-D and Alcator C-Mod tokamak plasmas are given.
引用
收藏
页码:229 / 234
页数:6
相关论文
共 50 条
  • [1] Waves and instabilities in magnetized dusty plasmas
    Shukla, PK
    ASTROPHYSICS AND SPACE SCIENCE, 1998, 264 (1-4) : 235 - 245
  • [2] Waves and Instabilities in Magnetized Dusty Plasmas
    Padma K. Shukla
    Astrophysics and Space Science, 1998, 264 : 235 - 245
  • [3] An ultrahigh-bandwidth Phase Contrast Imaging system for fusion plasmas
    Marinoni, A.
    Rost, J. C.
    Porkolab, M.
    Seraydarian, R.
    JOURNAL OF INSTRUMENTATION, 2022, 17 (06)
  • [4] Accelerating simulations of electromagnetic waves in hot, magnetized fusion plasmas
    Bude, R. H. S.
    Van Eester, D.
    van Dijk, J.
    Jaspers, R. J. E.
    Smolders, A. B.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (03)
  • [5] Finite ion temperature effects on electrostatic instabilities in partially magnetized plasmas
    Denig, A. C.
    Hara, K.
    PHYSICS OF PLASMAS, 2025, 32 (02)
  • [6] PROPAGATION AND INSTABILITIES OF WAVES IN BOUNDED FINITE TEMPERATURE PLASMAS
    LICHTENBERG, AJ
    JAYSON, JS
    JOURNAL OF APPLIED PHYSICS, 1965, 36 (02) : 449 - +
  • [7] High-speed imaging of magnetized plasmas: When electron temperature matters
    Vincent, Simon
    Dolique, Vincent
    Plihon, Nicolas
    PHYSICS OF PLASMAS, 2022, 29 (03)
  • [8] Weakly nonlinear high frequency waves in magnetized plasmas
    Skjaeraasen, O
    Pecseli, HL
    Trulsen, J
    PHYSICA SCRIPTA, 1998, T75 : 28 - 32
  • [9] Weakly nonlinear high frequency waves in magnetized plasmas
    Skjaeraasen, O.
    Pecseli, H.L.
    Trulsen, J.
    Physica Scripta T, T75 : 28 - 32
  • [10] Effects of finite electron temperature on gradient drift instabilities in partially magnetized plasmas
    Lakhin, V. P.
    Ilgisonis, V. I.
    Smolyakov, A. I.
    Sorokina, E. A.
    Marusov, N. A.
    PHYSICS OF PLASMAS, 2018, 25 (01)